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1 ECONOMETRICS AND ECONOMIC DATA 

1.1 What is econometrics? 
First, let us see something about the origin of econometrics as a discipline. The 

term econometrics is believed to have been crafted by Ragnar Frisch, co-winner of the 
first Nobel Prize in Economic Sciences in 1969, along with fellow econometrician Jan 
Tinbergen. Both of them were founders of the Econometric Society in 1933. In section I 
of the constitution of this society, it is stated that 

“The Econometric Society is an international society for the advancement of economic 
theory in its relation to statistics and mathematics. Its main object shall be to promote studies 
that aim at a unification of the theoretical-quantitative and the empirical-quantitative approach 
to economic problems and that are penetrated by constructive and rigorous thinking similar to 
that which has come to dominate the natural sciences”  

In the first issue of Econometrica (1933), the Econometric Society journal, Ragnar 
Frisch gives us an explanation about the meaning of econometrics:  

“But there are several aspects of the quantitative approach to economics, and no single 
one of these aspects, taken by itself, should be confounded with econometrics. Thus, 
econometrics is by no means the same as economic statistics. Nor is it identical with what we 
call general economic theory, although a considerable portion of this theory has a definitely 
quantitative character. Nor should econometrics be taken as synonymous with the application of 
mathematics to economics. Experience has shown that each of these three viewpoints, that of 
statistics, economic theory, and mathematics, is a necessary, but not by itself a sufficient 
condition for a real understanding of the quantitative relations in modern economic life. It is the 
unification of all three that is powerful. And it is this unification that constitutes econometrics.” 

Today, we would also say that econometrics is the combined study of economic 
models, mathematical statistics, and economic data. Within the field of econometrics, 
econometric theory can be distinguished from applied econometrics.  

Econometric theory concerns the development of tools and methods, and the study 
of the properties of econometric methods. Econometric theory belongs to the field of 
statistics. 

Applied econometrics is a term describing the development of quantitative 
economic models and the application of econometric methods to these models using 
economic data. Applied econometrics is mainly used in the field of applied economics.  

What are the goals of Econometrics? We are going to examine three: 
1) Knowledge of the real economy. Econometric methods allow us to estimate 

economic magnitudes such as the marginal propensity to consume or the elasticity of 
labor with respect to output. These estimations are located in a determined time and space: 
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for example, in Spain in the last quarter of the 20th century. In addition to the estimation, 
in which numerical values are obtained, econometric methods allow us to perform tests 
of hypothesis; for example, in a production function, is the hypothesis of constant returns 
to scale admissible? 

2) Economic simulation policy. Econometrics methods can be used to simulate the 
effects of alternative policies. For example, with an appropriate econometric 
model we could see, in quantitative terms, how the different increases in 
tobacco tax affect the consumption of tobacco. 

3) Prediction or forecasting. Very often econometric methods are used to predict 
values of economic variables in the future. By making predictions we try to 
reduce our uncertainty in the future of the economy. This is not an easy task, 
since in general the predictions are only satisfactory when there are no drastic 
changes in the economy. Although it would be useful to be able to predict these 
drastic changes accurately, both econometric and other alternative methods 
tend to be imprecise.  

1.2 Steps in developing an econometric model 
There are three main steps in developing an econometric model: specification, 

estimation and validation.  
While in a first approximation these stages follow a sequential order, in 

econometric analysis it is generally necessary to go back more than once within this 
sequence. It is necessary to continuously confront the model with the data and any other 
information source, in order to obtain an econometric model compatible with the data. 
The model can be used to analyze reality, offer better predictions or constitute a good 
basis for making decisions. Now we will describe the steps listed above. 

(a) Specification 
In this first step, the model or models used must be defined, as well as data to be 

used in the estimation stage.  
In the specification step, we will refer to four elements: the economic model, the 

econometric model, the statistical assumptions of the model and the data. In this section 
we will refer to the first three elements; in the following section we will examine different 
types of data used in econometric analysis. 

The first element we need is an economic model. In some cases, a formal 
economic model is constructed entirely using economic theory. In other cases, economic 
theory is used less formally in constructing an economic model. 

After we have an economic model, we must convert it into an econometric model. 
We are going to see that with two examples. 
EXAMPLE 1.1 Keynesian consumption function 

Keynes formulated his well-known consumption function in three propositions: 
Proposition 1: Consumption is a function of income, and both variables are measured in real terms. 

If the variables are measured in real terms, it means that when consumers decide the proportion of income 
devoted to consumption, they are not affected by monetary illusion. 

Analytically, proposition 1 can be expressed in the following way: 
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 ( )cons f inc=  (1-1) 

Proposition 2: Consumption is an increasing function of income, but an increase in income always 
causes an increase, to a lesser degree, in consumption. 

This proposition implies that marginal propensity to consumption is greater than 0 (it is an 
increasing function), but it is smaller than 1 (an increase in income always causes an increase, to a lesser 
degree, in consumption). 

Analytically, proposition 2 can be expressed in the following way: 

 d0 1
d
cons
inc

< <  (1-2) 

Proposition 3: The proportion of income consumed is smaller when income increases. That is to 
say, the proportion of the last euro earned devoted to consumption is smaller than the proportion of total 
income earned devoted to consumption. 

Analytically, proposition 3 can be expressed in the following way: 

 d
d
con cons
inc inc

<  (1-3) 

In other words, the marginal propensity to consume is smaller than the average propensity to 
consume. 

These three propositions constitute an economic model: the Keynesian consumption function. 
To estimate and test this model we must convert it into an econometric model. For this conversion, 

two requirements must be accomplished. 
According to the first requirement, it is necessary to specify the mathematical form of the function. 

The linear function has been used in this case because, in addition to being simple, it is compatible with the 
description made by Keynes. 

In order to justify the second requirement, it must be taken into account that the model formulated 
in proposition 1 is deterministic. That is to say, income is the only factor in the determination of 
consumption. But in real life there are many other factors, other than income, which have an influence on 
consumption. In an econometric model, all the factors different from the independent variables included 
are gathered in a variable denominated random disturbance or error (u). The second requirement is the 
introduction of the term of error in the equation. 

In general, all the relevant factors must be introduced explicitly in the econometric model; all the 
other factors are taken into account in a unique variable: the error or the random disturbance. In the 
Keynesian consumption function the only relevant factor considered is income. 

Taking into account these two requirements, Keynesian consumption function can be expressed in 
the following way: 

 1 2cons inc uβ β= + +  (1-4) 

This is an econometric model that can be estimated if you have data on consumption and income. 
Let us see now the other two propositions. In this linear model, the marginal propensity to consumption is 
the following: 

 2
d
d
cons
inc

β=  (1-5) 

Consequently, proposition 2 in this model is the following: 
 20 1β< <  (1-6) 

Once the model has been estimated, it is possible to test whether the estimate of 2β  is between 0 
and l. 

The average propensity to consume in the linear model, considering that the error is equal to 0, is 
the following: 

 1 2 1
2

inccons
inc inc inc

β β β
β

+
= = +  (1-7) 

Therefore, proposition 3 implies that 
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 1 1
2 2   or  0

inc inc
β β

β β+ > >  (1-8) 

That is to say, 
 1 0β >  (1-9) 

Once the model has been estimated, testing proposition 3 is equivalent to testing whether the 
intercept is significantly greater than 0. 

EXAMPLE 1.2 Wage determination 
Economic model: 
Formal economic theory - human capital theory- says that education (educ), experience (exper) 

and training are factors that affect productivity and hence the wage. Therefore, an economic model for 
wage determination could be the following: 

   ( , , )wage f educ exper training=  (1-10) 

Incidentally, do you think there is any variable missing in this model? 
Econometric model: 
The corresponding econometric model, using a mathematical linear form, is the following: 
 1 2 3 4 wage educ exper training uβ β β β= + + + +  (1-11) 

To sum up, to convert an economic model into an econometric model: 
a) The form of the function f(.) has been specified. 
b) A disturbance variable has been included to reflect the effect of other variables 

affecting wage, but not appearing in the model. 

An important element in the specification of the model is the formulation of a set 
of statistical assumptions, which are used in subsequent steps. These statistical 
assumptions play a key role in hypothesis testing and, in general, throughout the inference 
process carried out with the model. 

(b) Estimation 
In the estimation process we obtain numerical values of the coefficients of an 

econometric model. To complete this stage, data are required on all observable variables 
that appear in the specified econometric model, while it is also necessary to select the 
appropriate estimation method, taking into account the implications of this choice on the 
statistical properties of estimators of the coefficients. The distinction between estimator 
and estimate should be made clear. An estimator is the result of applying an estimation 
method to an econometric specification. On the other hand, an estimate consists of 
obtaining a numerical value of an estimator for a given sample. For example, applying a 
very simple estimation method, called ordinary least squares, to the specification of the 
consumption function (1-4) provides expressions which determine the estimators 1̂β  and 

2β̂ . Substituting the sample data in these expressions, two numbers are obtained: one for 

1̂β  and one for 2β̂  which provide estimates of the parameters β1 and β2. 

In general, it is possible to obtain analytical expressions of the estimators, 
particularly in the case of estimating linear relationships. But in non-linear procedures of 
estimation it is often difficult to establish their analytical expression. 
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 (c) Validation 
The results are assessed in the validation stage, where we assess whether the 

estimates obtained in the previous stage are acceptable, both theoretically and from the 
statistical point of view. On the one hand, we analyze, whether estimates of model 
parameters have the expected signs and magnitudes: that is to say, whether they satisfy 
the constraints established by economic theory. 

From the statistical point of view, on the other hand, statistical tests are performed 
on the significance of the parameters of the model, using the statistical assumptions made 
in the specification step. In turn, it is important to test whether the statistical assumptions 
of the econometric model are fulfilled, although it should be noted that not all assumptions 
are testable. The violation of any of these assumptions implies, in general, the application 
of another estimation method that allows us to obtain estimators whose statistical 
properties are as good as possible. 

One way to establish the ability of a model to make predictions is to use the model 
to forecast outside the sample period, and then to compare the predicted values of the 
endogenous variable with the values actually observed. 

1.3 Economic data 
As we have seen, an empirical analysis uses data to test a theory or to estimate a 

relationship. It is important to stress that in Econometrics we use non-experimental data. 
Non experimental or observational data are collected by observing the real world in a 
passive way. In this case, data are not the outcome of controlled experiments. 

Experimental data are often collected in laboratory environments in the same way 
as in natural sciences. Now, we are going to see three types of data which can be used in 
the estimation of an econometric model: time series, cross sectional data, and panel data.  
Time Series 

In time series, data are observations on a variable over time. For example: 
magnitudes from national accounts such as consumption, imports, income, etc. The 
chronological ordering of observations provides potentially important information. 
Consequently, ordering matters.  

Time series data cannot be assumed to be independent across time. Most economic 
series are related to their recent histories. Typical examples include macroeconomic 
aggregates such as prices and interest rates. This type of data is characterized by serial 
dependence.  

Given that most aggregated economic data are only available at a low frequency 
(annual, quarterly or perhaps monthly), the sample size can be much smaller than in 
typical cross sectional studies. The exception is financial data where data are available at 
a high frequency (weekly, daily, hourly, etc.) and so sample sizes can be quite large.  
Cross Sectional Data 

Cross sectional data sets have one observation per individual and data are referred 
to a determined point in time. In most studies, the individuals surveyed are individuals 
(for example, in the Labor Force Survey (EPA) more than 100000 individuals are 
interviewed every quarter), households (for example, the Household Budget Survey), 
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firms (for example, industrial firm survey) or other economic agents. Surveys are a typical 
source for cross-sectional data. In many contemporary econometric cross sectional 
studies the sample size is quite large.  

In cross sectional data, observations must be obtained by random sampling. Thus, 
cross sectional observations are mutually independent. The ordering of observations in 
cross sectional data does not matter for econometric analysis. If the data are not obtained 
with a random sample, we have a sample selection problem. 

So far we have referred to micro data type, but there may also be cross sectional 
data relating to aggregate units such as countries, regions, etc. Of course, data of this type 
are not obtained by random sampling. 
Panel Data 

Panel data (or longitudinal data) are time series for each cross sectional member 
in a data set. The key feature is that the same cross sectional units are followed over a 
given time period. Panel data combines elements of cross sectional and time series data. 
These data sets consist of a set of individuals (typically people, households, or 
corporations) surveyed repeatedly over time. The common modeling assumption is that 
the individuals are mutually independent of one another, but for a given individual, 
observations are mutually dependent. Thus, the ordering in the cross section of a panel 
data set does not matter, but the ordering in the time dimension matters a great deal. If we 
do not take into account the time in panel data, we say that we are using pooled cross 
sectional data. 
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2 THE SIMPLE REGRESSION MODEL: ESTIMATION 
AND PROPERTIES 

2.1 Some definitions in the simple regression model 

2.1.1 Population regression model and population regression function 
In the simple regression model, the population regression model or, simply, the 

population model is the following: 

 1 2y x uβ β= + +  (2-1) 

We shall look at the different elements of the model (2-1) and the terminology 
used to designate them. We are going to consider that there are three types of variables in 
the model: y, x and u. In this model there is only one factor x to explain y. All the other 
factors that affect y are jointly captured by u. 

We typically refer to y as the endogenous (from the Greek: generated inside) 
variable or dependent variable. Other denominations are also used to designate y: left-
hand side variable, explained variable, or regressand. In this model all these 
denominations are equivalent, but in other models, as we will see later on, there can be 
some differences. 

In the simple linear regression of y on x, we typically refer to x as the exogenous 
(from the Greek: generated outside) variable or independent variable. Other 
denominations are also used to designate x: right-hand side variable, explanatory variable, 
regressor, covariate, or control variable. All these denominations are equivalent, but in 
other models, as we will see later, there can be some differences.  

The variable u represents factors other than x that affect y. It is denominated error 
or random disturbance. The disturbance term can also capture measurement error in the 
dependent variable. The disturbance is an unobservable variable. 

The parameters 1β  and 2β  are fixed and unknown. 

On the right hand of (2-1) we can distinguish two parts: the systematic component 
1 2xβ β+  and the random disturbance u. Calling µy to the systematic component, we can 

write: 

 1 2y xµ β β= +  (2-2) 
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This equation is known as the population regression function (PRF) or population 
line. Therefore, as can be seen in figure 2.1, µy is a linear function of x with intercept 1β  
and slope 2β . 

The linearity means that a one-unit increase in x changes the expected value of y - 
( )y E ym = - by units. 

Now, let us suppose we have a random sample of size n {(yi ,xi): i = 1,…,n} from 
the studied population. In figure 2.2 the scatter diagram, corresponding to these data, have 
been displayed. 

 
FIGURE 2.1. The population regression function. 

(PRF) 

 
FIGURE 2.2. The scatter diagram. 

 

We can express the population model for each observation of the sample: 

 1 2    1, 2, ,i i iy x u i nβ β= + + =   (2-3) 

In figure 2.3 the population regression function and the scatter diagram are put 
together, but it is important to keep in mind that although 1β  and 2β are fixed, they are 
unknown. According to the model, it is possible to make the following decomposition 
from a theoretical point of view: 

    1, 2, ,i yi iy u i nµ= + =   (2-4) 

which is represented in figure 2.3 for the ith observation. However, from an empirical 
point of view, it is not possible because  and 2β  are unknown parameters and iu  is not 
observable. 

2.1.2 Sample regression function 
The basic idea of the regression model is to estimate the population parameters,  

2β and , from a given sample. 

The sample regression function (SRF) is the sample counterpart of the population 
regression function (PRF). Since the SRF is obtained for a given sample, a new sample 
will generate different estimates. 

The SRF, which is an estimation of the PRF, given by  
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 1 2
ˆ ˆˆi iy xβ β= +  (2-5) 

allows us to calculate the fitted value ( ˆiy ) for y when ix x= . In the SRF 1̂β   and 2β̂  are 
estimators of the parameters 1β  and 2β . For each xi we have an observed value ( iy ) and 
a fitted value ( ˆiy ). 

The difference between  and  is called the residual ˆiu : 

 1 2
ˆ ˆˆ ˆi i i i iu y y y xβ β= − = − −  (2-6) 

In other words, the residual ˆiu  is the difference between the sample value  and 
the fitted value of , as can be seen in figure 2.4. In this case, it is possible to calculate 
the decomposition: 

ˆ ˆi i iy y u= +  

for a given sample. 

 
FIGURE 2.3. The population regression function 

and the scatter diagram. 

 
FIGURE 2.4. The sample regression function 

and the scatter diagram. 

To sum up, , 2β̂ , and  are the sample counterpart of 1β , 2β , µyi and iu  

respectively. It is possible to calculate 1̂β  and 2β̂  for a given sample, but the estimates 
will change for each sample. On the contrary, 1β  and 2β  are fixed, but unknown. 

2.2 Obtaining the Ordinary Least Squares (OLS) Estimates 

2.2.1 Different criteria of estimation 
Before obtaining the least squares estimators, we are going to examine three 

alternative methods to illustrate the problem in hand. What these three methods have in 
common is that they try to minimize the residuals as a whole. 
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The first criterion takes as estimators those values of 1̂β  and 2β̂  that make the 
sum of all the residuals as near to zero as possible. According to this criterion, the 
expression to minimize would be the following: 

 Min
1

ˆ
n

i
i

u
=
∑  (2-7) 

The main problem of this procedure is that the residuals of different signs can be 
compensated. Such a situation can be observed graphically in figure 2.5, in which three 
aligned observations are graphed, ( 1 1,x y ), ( 2 2,x y ) and ( 3 3,x y ). In this case the following 
happens: 

3 12 1

2 1 3 1

y yy y
x x x x

−−
=

− −
 

 
FIGURE 2.5. The problems of criterion 1. 

If a straight line is fitted so that it passes through the three points, each one of the 
residuals will take value zero, and therefore 

3

1

ˆ 0i
i

u
=

=∑  

This fit could be considered optimal. But it is also possible to obtain 3

1
ˆ 0ii
u

=
=∑ , 

by rotating the straight line - from the point 2 2,x y - in any direction, as figure 2.5 shows, 

because 3 1ˆ ˆu u= − . In other words, by rotating this way the result  is always 

obtained. This simple example shows that this criterion is not appropriate for the 
estimation of the parameters given that, for any set of observations, an infinite number of 
straight lines exist, satisfying this criterion. 

Criterion 2 
In order to avoid the compensation of positive residuals with negative ones, the 

absolute values from the residuals are taken. In this case, the following expression would 
be minimized: 

y

xx1 x3x2

x

x

3

1
ˆ 0ii
u

=
=∑
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 Min
1

ˆ
n

i
i

u
=
∑  (2-8) 

Unfortunately, although the estimators thus obtained have some interesting 
properties, their calculation is complicated and requires resolving the problem of linear 
programming or applying a procedure of iterative calculation. 

Criterion 3 
A third procedure is to minimize the sum of the square residuals, that is to say, 

 2

1

ˆMin  Min
n

i
i

S u
=

= ∑  (2-9) 

The estimators obtained are denominated least square estimators (LS), and they 
enjoy certain desirable statistical properties, which will be studied later on. On the other 
hand, as opposed to the first of the examined criteria, when we square the residuals their 
compensation is avoided, and the least square estimators are simple to obtain, contrary to 
the second of the criteria. It is important to indicate that, from the moment we square the 
residuals, we proportionally penalize the bigger residuals more than the smaller ones (if 
a residual is double the size of another one, its square will be four times greater). This 
characterizes the least square estimation with respect to other possible procedures. 

2.2.2 Application of least square criterion 
Now, we are going to look at the process of obtaining the LS estimators. The 

objective is to minimize the residual sum of the squares (S). To do this, we are firstly 
going to express S as a function of the estimators, using (2-6): 

Therefore, we must 

 
1 2 1 2 1 2

2 2
1 2ˆ ˆ ˆ ˆ ˆ ˆ, , ,1 1

ˆ ˆˆMin Min Min ( )
T n

t i i
t i

S u y x
β β β β β β

β β
= =

= = − −∑ ∑  (2-10) 

To minimize S, we differentiate partially with respect to 1̂β  and 2β̂ : 

1 2
11

ˆ ˆ2 ( )ˆ
n

i i
i

S y xβ β
β =

∂
= − − −

∂
∑  

1 2
12

ˆ ˆ2 ( )ˆ
n

i i i
i

S y x xβ β
β =

∂
= − − −

∂
∑  

The LS estimators are obtained by equaling the previous derivatives to 0:  

 1 2
1

ˆ ˆ ( ) 0
n

i i
i

y xβ β
=

− − =∑  (2-11) 

 1 2
1

ˆ ˆ( ) 0
n

i i i
i

y x xβ β
=

− − =∑  (2-12) 

The equations (2-11) are denominated normal equations or LS first order 
conditions. 
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In operations with summations, the following rules must be taken into account: 

1

n

i
a na

=

=∑  

1 1

n n

i i
i i

ax a x
= =

=∑ ∑  

1 1 1
( )

n n n

i i i i
i i i

x y x y
= = =

+ = +∑ ∑ ∑  

Operating with the normal equations, we have  

 1 2
1 1

ˆ ˆ
n n

i i
i i

y n xβ β
= =

= +∑ ∑  (2-13) 

 2
1 2

1 1 1

ˆ ˆ
n n n

i i i i
i i i

y x x xβ β
= = =

= +∑ ∑ ∑  (2-14) 

 Dividing both sides of (2-13) by n, we have 

 1 2
ˆ ˆy xβ β= +  (2-15) 

Therefore 

 1 2
ˆ ˆy xβ β= −  (2-16) 

Substituting this value of 1̂β  in the second normal equation (2-14), we have 

2
2 2

1 1 1

ˆ ˆ( )
n n n

i i i i
i i i

y x y x x xβ β
= = =

= − +∑ ∑ ∑  

2
2 2

1 1 1 1

ˆ ˆ
n n n n

i i i i i
i i i i

y x y x x x xβ β
= = = =

= − +∑ ∑ ∑ ∑  

Solving for 2β̂  we have: 

 1 1
2

2

1 1

ˆ

n n

i i i
i i

n n

i i
i i

y x y x

x x x
β = =

= =

−
=

−

∑ ∑

∑ ∑
 (2-17) 

Or, as can be seen in appendix 2.1, 

 1
2

2

1

( )( )
ˆ

( )

n

i i
i

n

i
i

y y x x

x x
β =

=

− −
=

−

∑

∑
 (2-18) 

Dividing the numerator and denominator of (2-18) by n, it can be seen that 2β̂  is 
equal to the ratio between the two variables covariance and variance of x. Therefore, the 
sign of 2β̂  is the same as the sign of the covariance. 
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Once 2β̂  is calculated, then we can obtain 1̂β  by using (2-16). 

These are the LS estimators. Since other more complicated methods exist, also 
called least square methods, the method that we have applied is denominated ordinary 
least square (OLS), due to its simplicity. 

In the precedent epigraphs 1̂β  and 2β̂  have been used to designate generic 
estimators. From now on, we will only designate OLS estimators with this notation. 
EXAMPLE 2.1 Estimation of the consumption function  

Given the Keynesian consumption function, 

1 2 icons inc uβ β= + +  

we will estimate it using data from six households that appear in table 2.1. 

TABLE 2.1. Data and calculations to estimate the consumption function. 

Observ. icons  iinc  i icons inc×  
2
iinc  icons cons−  iinc inc−  

( )

( )

i

i

cons cons

inc inc

−
×

−  

 2( )iinc inc−  

1 5 6 30 36 -4 -5 20 25 
2 7 9 63 81 -2 -2 4 4 
3 8 10 80 100 -1 -1 1 1 
4 10 12 120 144 1 1 1 1 
5 11 13 143 169 2 2 4 4 
6 13 16 208 256 4 5 20 25 

Sums 54 66 644 786 0 0 50 60 
 

Calculating cons  and inc , and applying the formula (2-17), or alternatively (2-18), for the data 
table 2.1, we obtain 

54 9
6

cons = = ;   66 11
6

inc = = ; (2-17): 2
644 9 66ˆ 0.83
786 11 66

β − ×
= =

− ×


; (2-18): 2

50ˆ 0.83
60

β = =


 

Then by applying (2-16), we obtain 1̂ 9 0.83 11 0.16β = − × = −
 

 

2.3 Some characteristics of OLS estimators 

2.3.1 Algebraic implications of the estimation 
The algebraic implications of the estimation are derived exclusively from the 

application of the OLS procedure to the simple linear regression model: 
1. The sum of the OLS residuals is equal to 0:  

 
1

ˆ 0
n

i
i

u
=

=∑  (2-19) 

From the definition of residual  

 1 2
ˆ ˆˆ ˆ         1, 2, ,i i i i iu y y y x i nβ β= − = − − =   (2-20) 

If we sum up the n observations, we get  
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 1 2
1 1

ˆ ˆˆ ( ) 0
n n

i i i
i i

u y xβ β
= =

= − − =∑ ∑  (2-21) 

which is precisely the first equation (2-11) of the system of normal equations. 
Note that, if (2-19) holds, it implies that  

 
1 1

ˆ
n n

i i
i i

y y
= =

=∑ ∑  (2-22) 

and, dividing (2-19) and (2-22) by n, we obtain 

 ˆ ˆ0         u y y= =  (2-23) 

2. The OLS line always goes through the mean of the sample ( ,x y ).  

Effectively, dividing the equation (2-13) by n, we have:  

 1 2
ˆ ˆy xβ β= +  (2-24) 

3. The sample cross product between each one of the regressors and the OLS 
residuals is zero. 

That is to say, 

 
1

ˆ 0
n

i i
i

x u
=
∑ =  (2-25) 

We can see that (2-25) is equal to the second normal equation,  

1 2
1 1

ˆ ˆˆ ( ) 0
n n

i i i i i
i i

x u x y xβ β
= =

= − − =∑ ∑  

given in (2-12). 

4. The sample cross product between the fitted values ( ŷ ) and the OLS residuals 
is zero. 

That is to say, 

 ´
1

ˆ ˆ 0
n

i i
i

y u
=

=∑  (2-26) 

Proof 
Taking into account the algebraic implications 1 -(2-19)- and 3 -(2-25)-, we have 

´ 1 2 ´ 1 ´ 2 ´ 1 2
1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) 0 0 0
n n n n

i i i i i i i
i i i i

y u x u u x uβ β β β β β
= = = =

= + = + = × + × =∑ ∑ ∑ ∑  

2.3.2 Decomposition of the variance of y 
By definition 

 ˆ ˆi i iy y u= +  (2-27) 
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Subtracting y  on both sides of the previous expression (remember that ŷ  is 
equal to ), we have 

 ˆ ˆ ˆi i iy y y y u− = − +   

Squaring both sides: 

[ ]
22 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 ( )i i i i i i iy y y y u y y u u y y − = − + = − + + −   

Summing for all i: 

[ ]2 2 2ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 ( )i i i i iy y y y u u y y− = − + + −∑ ∑ ∑ ∑  

Taking into account the algebraic properties 1 and 4, the third term of the right 
hand side is equal to 0. Analytically, 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) 0i i i i iu y y u y y u− = − =∑ ∑ ∑  (2-28) 

Therefore, we have 

 [ ]2 2 2ˆ ˆ ˆ( )i i iy y y y u− = − +∑ ∑ ∑  (2-29) 

In words, 
Total sum of squares (TSS) = 

Explained sum of squares (ESS)+Residual sum of squares (RSS) 
It must be stressed that it is necessary to use the relation (2-19) to assure that (2-28) 

is equal to 0. We must remember that (2-19) is associated to the first normal equation: 
that is to say, to the equation corresponding to the intercept. If there is no intercept in the 
fitted model, then in general the decomposition obtained will not be fulfilled (2-29). 

This decomposition can be made with variances, by dividing both sides of (2-29) 
by n: 

 
( )2 2 2ˆ ˆ ˆ( )i i iy y y y u

n n n
− −

= +∑ ∑ ∑  (2-30) 

In words, 
Total variance=explained variance+ residual variance  

2.3.3 Goodness of fit: Coefficient of determination (R2) 
A priori we have obtained the estimators minimizing the sum of square residuals. 
Once the estimation has been done, we can see how well our sample regression 

line fits our data. 
The measures that indicate how well the sample regression line fits the data are 

denominated goodness of fit measures. We are going to look at the most well-known 
measure, which is called coefficient of determination or the R-square ( 2R ). This measure 
is defined in the following way: 

y
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2

2 1

2

1

ˆ ˆ( )

( )

n

i
i
n

i
i

y y
R

y y

=

=

−
=

−

∑

∑
 (2-31) 

Therefore, 2R  is the proportion of the total sum of squares (TSS) which is 
explained by the regression (ESS): that is to say, which is explained by the model. We 
can also say that 100  is the percentage of the sample variation in y explained by x. 

Alternatively, taking into account (2-29), we have: 
2 2 2ˆ ˆ ˆ( ) ( )i i iy y y y u− = − −∑ ∑ ∑  

 Substituting in (2-31), we have  

 

2
2 2 2

2 1

2 2 2

1 1 1

ˆ ˆ( ) ˆ ˆ( )
1 1

( ) ( ) ( )

n

i
i i ii

n n n

i i i
i i i

y y y y u u RSSR
TSSy y y y y y

=

= = =

− − −
= = = − = −

− − −

∑ ∑ ∑ ∑
∑ ∑ ∑

 (2-32) 

Therefore,  is equal to 1 minus the proportion of the total sum of squares (TSS) 
that is non-explained by the regression (RSS). 

According to the definition of , the following must be accomplished  
20 1R≤ ≤  

Extreme cases: 

a) If we have a perfect fit, then ˆ 0   íu i= ∀ . This implies that 

2 2 2ˆ ˆ ˆ     ( ) ( )   1í í i iy y i y y y y R= ∀ ⇒ − = − ⇒ =∑ ∑  

b) If ˆ     íy c i= ∀ , it implies that 

2 2ˆ ˆ ˆ ˆ ˆ   0      ( ) 0   0i iy c y y c c i y y R= ⇒ − = − = ∀ ⇒ − = ⇒ =∑  

If  is close to 0, it implies that we have a poor fit. In other words, very little 
variation in y is explained by x. 

In many cases, a high  is obtained when the model is fitted using time series 
data, due to the effect of a common trend. On the contrary, when we use cross sectional 
data a low value is obtained in many cases, but it does not mean that the fitted model is 
bad. 

What is the relationship between the coefficient of determination and the 
coefficient of correlation studied in descriptive statistics? The coefficient of 
determination is equal to the squared coefficient of correlation, as can be seen in appendix 
2.2: 

 2 2
xyr R=  (2-33) 

2R

2R

2R

2R

2R



THE SIMPLE REGRESSION MODEL 

25 
 

(This equality is only valid in the simple regression model, but not in multiple 
regression model). 
EXAMPLE 2.2 Fulfilling algebraic implications and calculating R2 in the consumption function 

In column 2 of table 2.2, · icons is calculated; in columns 3, 4 and 5, you can see the fulfillment of 
algebraic implications 1, 3 and 4 respectively. The remainder of the columns shows the calculations to 
obtain 

2 41.67         0.992
42

TSS ESS RSS R= 42  = 41.67 = 42 − 41.67 = 0.33      = =  

or, alternatively, 2 0.33 0.992
42

R = 1− =  

TABLE 2.2. Data and calculations to estimate the consumption function. 

Observ. ·
icons  

ˆiu  ˆi iu inc×  
· ˆi icons u´  

2
icons  

2( )icons cons−  · 2
icons  

· · 2( )icons cons-  

1 4.83 0.17 1.00 0.81 25 16 23.36 17.36 
2 7.33 -0.33 -3.00 -2.44 49 4 53.78 2.78 
3 8.17 -0.17 -1.67 -1.36 64 1 66.69 0.69 
4 9.83 0.17 2.00 1.64 100 1 96.69 0.69 
5 10.67 0.33 4.33 3.56 121 4 113.78 2.78 
6 13.17 -0.17 -2.67 -2.19 169 16 173.36 17.36 
 54.00 0.00 0.00 0.00 528 42 527.67 41.67 

2.3.4 Regression through the origin 
If we force the regression line to pass through the point (0,0), we are constraining 

the intercept to be zero, as can be seen in figure 2.6. This is called a regression through 
the origin. 

 
FIGURE 2.6. A regression through the origin. 

Now, we are going to estimate a regression line through the origin. The fitted 
model is the following: 

 2i iy xβ=   (2-34) 

Therefore, we must minimize 

y

x



























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2 2

2
2

1
Min Min ( )

n

i i
i

S y x
β β

β
=

= −∑ 
  (2-35) 

To minimize S, we differentiate with respect to 2β  and equal to 0: 

 2
12

2 ( ) 0
n

i i i
i

dS y x x
d

β
β =

= − − =∑ 
  (2-36) 

Solving for 2β  

 1
2

2

1

n

i i
i

n

i
i

y x

x
β =

=

=
∑

∑
  (2-37) 

Another problem with fitting a regression line through the origin is that the 
following generally happens: 

( )2 2 2ˆ ˆ ˆ( )i i iy y y y u− ≠ − +∑ ∑ ∑  

If the decomposition of the variance of y in two components (explained and 
residual) is not possible, then the R2 is meaningless. This coefficient can take values that 
are negative or greater than 1 in the model without intercept. 

To sum up, an intercept must always be included in the regressions, unless there 
are strong reasons against it supported by the economic theory. 

2.4 Units of measurement and functional form 

2.4.1 Units of Measurement 

Changing the units of measurement (change of scale) in x 

If x is multiplied/divided by a constant, c≠0, then the OLS slope is 
divided/multiplied by the same constant, c. Thus 

 2
1

ˆˆˆ ( )i iy x c
c
ββ

 
= + × 

 
 (2-38) 

EXAMPLE 2.3  
Let us suppose the following estimated consumption function, in which both variables are 

measured in thousands of euros: 

 · 0.2 0.85i icons inc= + ´  (2-39) 

If we now express income in euros (multiplication by 1000) and call it ince, the fitted model with 
the new units of measurement of income would be the following: 

· 0.2 0.00085i icons ince= + ×  

As can be seen, changing the units of measurement of the explanatory variable does not affect the 
intercept. 
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Changing the units of measurement (change of scale) in y 

If y is multiplied/divided by a constant, c≠0, then the OLS slope and intercept are 
both multiplied/divided by the same constant, c. Thus,  

 1 2
ˆ ˆˆ( ) ( ) ( )i iy c c c xβ β× = × + ×  (2-40) 

EXAMPLE 2.4 
If we express consumption in euros (multiplication by 1000) in model (2-39),  and call it conse, 

the fitted model with the new units of measurement of consumption would be the following: 
· 200 850i iconse inc= + ×  

Changing the origin 
If one adds/subtracts a constant d to x and/or y, then the OLS slope is not affected. 

However, changing the origin of either x and/or y affects the intercept of the regression. 
If one subtracts a constant d to x, the intercept will change in the following way: 

 1 2 2
ˆ ˆ ˆˆ ( ) ( )i iy d x dβ β β= + × + −  (2-41) 

If one subtracts a constant d to y, the intercept will change in the following way: 

 1 2
ˆ ˆˆ ( )i iy d d xβ β− = − +  (2-42) 

EXAMPLE 2.5 
Let us suppose that the average income is 20 thousand euros. If we define the variable 

i iincd inc inc= −  and both variables are measured in thousands of euros, the fitted model with this change 
in the origin will be the following:  

· (0.2 0.85 20) 0.85 ( 20) 17.2 0.85i i icons inc incd= + × + × − = + ×  

EXAMPLE 2.6 
Let us suppose that the average consumption is 15 thousands euros. If we define the variable 

i iconsd cons cons= −  and both variables are measured in euros, the fitted model with this change in the 
origin will be the following:  

· 15 0.2 15 0.85i icons inc− = − + ×  

that is to say, 
· 14.8 0.85i iconsd inc= - + ´  

Note that R2 is invariant to changes in the units of x and/or y, and also is invariant to the origin of 
the variables. 

2.4.2 Functional Form 
In many cases linear relationships are not adequate for economic applications. 

However, in the simple regression model we can incorporate nonlinearities (in variables) 
by appropriately redefining the dependent and independent variables. 
Some definitions 

Now we are going to look at some definitions of variation measures that will be 
useful in the interpretation of the coefficients corresponding to different functional forms. 
Specifically, we will look at the following: proportional change and change in logarithms. 
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The proportional change (or relative variation rate) between 1x  and 0x  is given 
by: 

 1 01

0 0

x xx
x x

−∆
=  (2-43) 

Multiplying a proportional change by 100, we obtain a proportional change in %. 
That is to say: 

 1

0

100 %x
x

∆  (2-44) 

The change in logarithms and change in logarithms in % between 1x  and 0x  are 
given by 

 1 0ln( ) ln( ) ln( )
100 ln( )%
x x x

x
∆ = −

∆
 (2-45) 

The change in logarithms is an approximation to the proportional change, as can 
be seen in appendix 2.3. This approximation is good when the proportional change is 
small, but the differences can be important when the proportional change is big, as can 
seen in table 2.3.  
TABLE 2.3. Examples of proportional change and change in logarithms. 

x1 202 210 220 240 300 
x0 200 200 200 200 200 

Proportional change in % 1% 5.0% 10.0% 20.0% 50.0% 
Change in logarithms in % 1% 4.9% 9.5% 18.2% 40.5% 

Elasticity is the ratio of the relative changes of two variables. If we use 
proportional changes, the elasticity of the variable y with respect to the variable x is given 
by 

 0
/

0
y x

y y
x x

ε ∆ /
=

∆ /
 (2-46) 

If we use changes in logarithms and consider infinitesimal changes, then the 
elasticity of the variable y with respect to a variable x is given by 

 /
ln( )
ln( )y x

dy y d y
dx x d x

/
= =

/
ε  (2-47) 

In econometric models, elasticity is generally defined by using (2-47). 
Alternative functional forms 

The OLS method can also be applied to models in which the endogenous variable 
and/or the exogenous variable have been transformed. In the presentation of the model 
(2-1) we said that the exogenous variable and regressor were equivalent terms. But from 
now on, a regressor is the specific form in which an exogenous variable appears in the 
equation. For example, in the model 

1 2 ln( )y x uβ β= + +  
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the exogenous variable is x, but the regressor is ln(x). 
In the presentation of the model (2-1) we also said that the endogenous variable 

and the regressand were equivalent. But from now on, the regressand is the specific form 
in which an endogenous variable appears in the equation. For example, in the model 

1 2ln( )y x uβ β= + +  

the endogenous variable is y, but the regressand is ln(y). 
Both models are linear in the parameters, although they are not linear in the 

variable x (the first one) or in the variable y (the second one). In any case, if a model is 
linear in the parameters, it can be estimated by applying the OLS method. On the contrary, 
if a model is not linear in the parameters, iterative methods must be used in the estimation. 

However, there are certain nonlinear models which, by means of suitable 
transformations, can become linear. These models are denominated linearizables. 

Thus, on some occasions potential models are postulated in economic theory, such 
as the well-known Cobb-Douglas production function. A potential model with a unique 
explanatory variable is given by 

1 2y e xβ β=  

If we introduce the disturbance term in a multiplicative form, we obtain: 

 1 2 uy e x eβ β=  (2-48) 

Taking natural logarithms on both sides of (2-48), we obtain a linear model in the 
parameters: 

 1 2ln( ) ln( )y x uβ β= + +  (2-49) 

On the contrary, if we introduce the disturbance term in an additive form, we 
obtain 

1 2y e x uβ β= +  

In this case, there is no transformation which allows this model to be turned into a linear 
model. This is a non-linearizable model. 

Now we are going to consider some models with alternative functional forms, all 
of which are linear in the parameters. We will look at the interpretation of the coefficient 

2β̂  in each case. 

a) Linear model 

The 2β̂  coefficient measures the effect of the regressor x on y. Let us look at this 
in detail. The observation i of the sample regression function is given according to (2-5) 
by 

 1 2
ˆ ˆˆi iy xβ β= +  (2-50) 

Let us consider the observation h of the fitted model whereupon the value of the 
regressor and, consequently, of the regressand has changed with respect to (2-50): 
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 1 2
ˆ ˆˆh hy xβ β= +  (2-51) 

Subtracting (2-51) from (2-50), we see that x has a linear effect on ŷ : 

 1̂ŷ xβ∆ = ∆  (2-52) 

where ˆ ˆ ˆ  and i h i hy y y x x x∆ = − ∆ = −  

Therefore, 2β̂  is the change in y (in the units in which y is measured) by a unit 
change of x (in the units in which x is measured). 

For example, if income increases by 1 unit, consumption will increase by 0.85 
units in the fitted function (2-39). 

The linearity of this model implies that a one-unit change in x always has the same 
effect on y, regardless of the value of x considered. 
EXAMPLE 2.7 Quantity sold of coffee as a function of its price. Linear model 

In a marketing experiment1 the following model has been formulated to explain the quantity sold 
of coffee per week (coffqty) as a function of the price of coffee (coffpric).  

1 2coffqty coffpric uβ β= + +  

The variable coffpric takes the value 1 for the usual price, and also 0.95 and 0.85 in two price 
actions whose effects are under investigation. This experiment lasted 12 weeks. coffqty is expressed in 
thousands of units and coffpric in French francs. Data appear in table 2.4 and in work file coffee1. 

The fitted model is the following: 
· 2693.33     0.95    coffqty coffpric R n= 774.9 = = 12-  

TABLE 2.4. Data on quantities and prices of coffee. 

week coffpric coffqty 

1 1.00 89 
2 1.00 86 
3 1.00 74 
4 1.00 79 
5 1.00 68 
6 1.00 84 
7 0.95 139 
8 0.95 122 
9 0.95 102 

10 0.85 186 
11 0.85 179 
12 0.85 187 

Interpretation of the coefficient 2β̂ : if the price of coffee increases by 1 French franc, the 
quantity sold of coffee will decrease by 693.33 thousands of units. As the price of coffee is a small 

                                                 
1The data of this exercise were obtained from a controlled marketing experiment in stores in Paris 

on coffee expenditure, as reported in A. C. Bemmaor and D. Mouchoux, “Measuring the Short-Term Effect 
of In-Store Promotion and Retail Advertising on Brand Sales: A Factorial Experiment”, Journal of 
Marketing Research, 28 (1991), 202–14. 
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magnitude, the following interpretation is preferable: if the price of coffee increases by 1 cent of a French 
franc, the quantity sold will decrease by 6.93 thousands of units. 

EXAMPLE 2.8 Explaining market capitalization of Spanish banks. Linear model 
Using data from Bolsa de Madrid (Madrid Stock Exchange) on August 18, 1995 (file bolmad95, 

the first 20 observations), the following model has been estimated to explain the market capitalization of 
banks and financial institutions: 

· 29.42 1.219marktval bookval= +  

R2=0.836      n=20 

where  
- marktval is the capitalization the market value of a company. It is calculated by multiplying the 

price of the stock by the number of stocks issued. 
- bookval is the book value or the net worth of the company. The book value is calculated as the 

difference between a company's assets and its liabilities. 
- Data on marktval and bookval are expressed in millions of pesetas. 

Interpretation of the coefficient β2: if the book value of a bank increases by 1 million pesetas, the 
market capitalization of this bank will increase by 1.219 million of pesetas. 

b) Linear-log model 
A linear-log model is given by 

 1 2 ln( )y x uβ β= + +  (2-53) 

The corresponding fitted function is the following: 

 1 2
ˆ ˆˆ ln( )y xβ β= +  (2-54) 

Taking first order differences in (2-54), and then multiplying and dividing the 
right hand side by 100, we have 

2
ˆ

ˆ 100 ln( )%
100

y xβ
∆ = × ∆  

Therefore, if x increases by 1%, then ŷ  will increase by 2
ˆ( /100)β  units. 

c) Log-linear model 
A log-linear model is given by 

 1 2ln( )y x uβ β= + +  (2-55) 

The above model can be obtained by taking natural logs on both sides of the 
following model: 

1 2exp( )y x uβ β= + +  

. For this reason, the model (2-55) is also called exponential. 
The corresponding sample regression function to (2-55) is the following: 

 ·
1 2

ˆ ˆln( )y xb b= +  (2-56) 

http://www.wisegeek.com/what-is-net-worth.htm
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Taking first order differences in (2-56), and then multiplying both sides by 100, 
we have 

·
2

ˆ100 ln( )%  100y xb´ D = ´ D  

Therefore, if x increases by 1 unit, then ŷ will increase by 100 2β̂ %. 

d) Log-log model 
The model given in (2-49) is a log-log model or, before the transformation, a 

potential model (2-48). This model is also called a constant elasticity model. 
The corresponding fitted model to (2-49) is the following: 

 ·
1 2

ˆ ˆln( ) ln( )y xb b= +  (2-57) 

Taking first order differences in (2-57), we have 

·
2

ˆln( ) ln( )y xbD = D  

Therefore, if x increases by 1%, then ŷ will increase by 2β̂ %. It is important to 

remark that, in this model, 2β̂  is the estimated elasticity of y with respect to x, for any 
value of x and y. Consequently, in this model the elasticity is constant. 

In annex 1 in a study case on the Engel curve for demand of dairy, six alternative 
functional forms are analyzed. 
EXAMPLE 2.9 Quantity sold of coffee as a function of its price. Log- log model (Continuation example 
2.7) 

As an alternative to the linear model the following log-log model has been fitted: 
· 2ln( ) 5.132ln( )    0.90     coffqty coffpric R n= 4.415 = = 12-  

Interpretation of the coefficient 2β̂ : if the price of coffee increases by 1%, the quantity sold of 

coffee will decrease by 5.13%. In this case 2β̂  is the estimated demand/price elasticity. 

EXAMPLE 2.10 Explaining market capitalization of Spanish banks. Log-log model (Continuation 
example 2.8) 

Using data from example 2.8, the following log-log model has been estimated: 
·ln( ) 0.6756 0.938ln( )marktval bookval= +  

R2=0.928      n=20 

Interpretation of the coefficient 2β̂ : if the book value of a bank increases by 1%, the market 

capitalization of this bank will increase by 0.938%. In this case 2β̂  is the estimated market value/book 
value elasticity. 

In table 2.5 and for the fitted model, the interpretation of 2β̂  in these four models is shown. If we 
are considering the population model, the interpretation of 2β  is the same but taking into account that ∆u 
must be equal to 0. 
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TABLE 2.5. Interpretation of 2β̂ in different models.  

Model If x increases by then y will increase by  

linear 1 unit 2β̂  units 

linear-log 1% 2
ˆ( /100)β  units 

log-linear 1 unit 2
ˆ(100 )%β  

log-log 1% 2
ˆ %β  

2.5 Assumptions and statistical properties of OLS 

We are now going to study the statistical properties of OLS estimators 1̂β  and 2β̂
. But first we need to formulate a set of statistical assumptions. Specifically, the set of 
assumptions that we are going to formulate are called classical linear model assumptions 
(CLM). It is important to note that CLM assumptions are simple and that the OLS 
estimators have, under these assumptions, very good properties.  

2.5.1 Statistical assumptions of the CLM in simple linear regression 

a) Assumption on the functional form 
1) The relationship between the regressand, the regressor and the random 

disturbance is linear in the parameters: 

 1 2y x uβ β= + +  (2-58) 

The regressand and the regressors can be any function of the endogenous variable and 
the explanatory variables, respectively, provided that among regressors and regressand 
there is a linear relationship, i.e. the model is linear in the parameters. The additivity of 
the disturbance guarantees the linear relationship with the rest of the elements. 

b) Assumptions on the regressor x 
2) The values of x are fixed in repeated sampling: 
According to this assumption, each observation of the regressor takes the same 

value for different samples of the regressand. This is a strong assumption in the case of 
the social sciences, where in general it is not possible to experiment. Data are obtained 
by observation, not by experimentation. It is important to remark that the results obtained 
using this assumption would remain virtually identical if we assume the repressors are 
stochastic, provided the additional assumption of independence between the regressors 
and the random disturbance is fulfilled. This alternative assumption can be formulated as: 

2*) The regressor x is distributed independently of the random disturbance. 
In any case, throughout this chapter and the following ones we will adopt 

assumption 2. 
3) The regressor x does not contain measurement errors 
This is an assumption that is not often fulfilled in practice, since the measurement 

instruments are unreliable in economy. Think, for example, of the multitude of errors that 
can be made in the collection of information, through surveys on families.  
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4) The sample variance of x is different from 0 and has a finite limit as n tends to 
infinity 

Therefore, this assumption implies that  

 
( )2

2 1 0

n

i
i

X

x x
S

n
=

−
= ≠

∑
 (2-59) 

c) Assumptions on the parameters 

5) The parameters β1 and β2 are fixed 
If this assumption is not adopted, the regression model would be very difficult to 

handle. In any case, it may be acceptable to postulate that the model parameters are stable 
over time (if it is not a very long period) or space (if it is relatively limited). 

d) Assumptions on the random disturbances 
6) The disturbances have zero mean, 

 ( ) 0,       1, 2,3, ,iE u i n= = …  (2-60) 

This is not a restrictive assumption, since we can always use 1β to normalize E(u) 
to 0. Let us suppose, for example, that ( ) 4E u = . We could then redefine the model in the 
following way: 

1 2( 4)y x vβ β= + + +  

where 4v u= − . Therefore, the expectation of the new disturbance, v, is 0 and the 
expectation of u has been absorbed by the intercept. 

7) The disturbances have a constant variance 

 2( )      1, 2,ivar u i nσ= =   (2-61) 

This assumption is called the homoskedasticity assumption. The word comes from 
the Greek: homo (equal) and skedasticity (spread). This means that the variation of y 
around the regression line is the same across the x values; that is to say, it neither increases 
or decreases as x varies. This can be seen in figure 2.7, part a), where disturbances are 
homoskedastic.  

  
   a)        b) 

FIGURE 2.7. Random disturbances: a) homoskedastic; b) heteroskedastic. 
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If this assumption is not satisfied, as happens in part b) of figure 2.7, the OLS 
regression coefficients are not efficient. Disturbances in this case are heteroskedastic 
(hetero means different). 

8) The disturbances with different subscripts are not correlated with each other 
(no autocorrelation assumption): 

 ( ) 0          i jE u u i j= ≠  (2-62) 

That is, the disturbances corresponding to different individuals or different periods 
of time are not correlated with each other. This assumption of no autocorrelation or no 
serial correlation, like the previous one, is testable a posteriori. The transgression occurs 
quite frequently in models using time series data. 

9) The disturbance u is normally distributed 

Taking into account assumptions 6, 7 y 8, we have  

 2~ (0 )         1, 2, ,iu NID i nσ =,   (2-63) 

where NID states for normally independently distributed. 

The reason for this assumption is that if u is normally distributed, so will y and the 
estimated regression coefficients, and this will be useful in performing tests of hypotheses 
and constructing confidence intervals for β1 and β2. The justification for the assumption 
depends on the Central Limit Theorem. In essence, this theorem states that, if a random 
variable is the composite result of the effects of an indefinite number of variables, it will 
have an approximately normal distribution even if its components do not, provided that 
none of them is dominant.  

2.5.2 Desirable properties of the estimators 
Before examining the properties of OLS estimators under the statistical 

assumptions of the CLM, we pose the following question: what are the desirable 
properties for an estimator? 

Two desirable properties for an estimator are that it is unbiased and its variance is 
as small as possible. If this occurs, the inference process will be carried out in optimal 
conditions. 

We will illustrate these properties graphically. Consider first the property of 
unbiasedness. In Figures 2.8 and 2.9 the density functions of two hypothetical estimators 
obtained by two different methods are shown. 
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FIGURE 2.8. Unbiased estimator. 

 
FIGURE 2.9. Biased estimator. 

The estimator 2b̂  is unbiased, i.e., its expected value is equal to the parameter that 

is estimated, β2. The estimator 2b̂  is a random variable. In each sample of y’s – the x’s 

are fixed in a repeated sample according to assumption 2- 2b̂  taking a different value, but 

on average is equal to the parameter β2, bearing in mind the infinite number of values 2b̂  

can take. In each sample of y’s a specific value of 2b̂ , that is to say, an estimation of 2b̂  
is obtained. In figure 2.8 two estimations of β2 ( 2(1)b̂  and 2(2)b̂ ) are obtained. The first 
estimate is relatively close to β2, while the second one is much farther away. In any case, 
unbiasedness is a desirable property because it ensures that, on average, the estimator is 
centered on the parameter value. 

The estimator 2b%  is biased, since its expectation is not equal to β2. The bias is 

precisely ( )2 2E b b-% . In this case two hypothetical estimates, 2(1)b%  and 2(2)b% , are 

represented in figure 2.9. As can be seen 2(1)b%  is closer to β2 than the unbiased estimator

2(1)b̂ , but this is a matter of chance. In any case, when it is biased, it is not centered on 
the parameter value. An unbiased estimator will always be preferable, regardless of what 
happens in a specific sample, because it has no systematic deviation from the parameter 
value. 

Another desirable property is efficiency. This property refers to the variance of 
the estimators. In figures 2.10 and 2.11 two hypothetical unbiased estimators, which are 
also called 2b̂  and 2b% , are represented. The first one has a smaller variance than the 
second one.  

( )ˆf b2

( )ˆEb b=2 2 b̂2( )b̂2 1 ( )b̂2 2

( )f b2
%

( )E b2
% b2

%( )b2 1
%

( )b2 2
%b2
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FIGURE 2.10. Estimator with small variance. 

 
FIGURE 2.11. Estimator with big variance. 

In both figures we have represented two estimates: 2(3)b̂ and 2(4)b̂  for the 

estimator with the smallest variance; and 2(3)b%  and 2(4)b%  for the estimator with the 
greatest variance. To highlight the role played by chance, the estimate that is closer to β2 
is precisely 2(3)b% . In any case, it is preferable that the variance of the estimator is as small 

as possible. For example, when using the estimator 2b̂  it is practically impossible that an 

estimate is so far from β2 as it is in the case of 2b̂ , because the range of 2b̂  is much 
smaller than the range of 2b%  

2.5.3 Statistical properties of OLS estimators 
Under the above assumptions, the OLS estimators possess some ideal properties. 

Thus, we can say that the OLS are the best linear unbiased estimators. 

Linearity and unbiasedness of the OLS 

The OLS estimator 2b̂  is unbiased. In appendix 2.4 we prove that 2b̂  is an 
unbiased estimator using implicitly assumptions 3, 4 and 5, and explicitly assumptions 1, 
2 and 6. In that appendix we can also see that 2b̂  is a linear estimator using assumptions 
1 and 2. 

Similarly, one can show that the OLS estimator 1̂b is also unbiased. Remember that 
unbiasedness is a general property of the estimator, but in a given sample we may be 
“near” or “far” from the true parameter. In any case, its distribution will be centered at 
the population parameter. 

Variances of the OLS estimators 
Now we know that the sampling distribution of our estimator is centered around 

the true parameter. How spread out is this distribution? The variance (which is a measure 
of dispersion) of an estimator is an indicator of the accuracy of the estimator. 

In order to obtain the variances of 1̂β  and 2β̂ , assumptions 7 and 8 are needed, 
in addition to the first six assumptions. These variances are the following:  

( )ˆf b2

b̂2( )b̂2 3 ( )b̂2 4
b2

( )f b2
%

b2 b2
%

( )b2 4
%

( )b2 3
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 (2-64) 

Appendix 2.5 shows how the variance for 2β̂  is obtained. 

OLS estimators are BLUE 
The OLS estimators have the least variance in the class of all linear and unbiased 

estimators. For this reason it is said that OLS estimators are the best linear unbiased 
estimators (BLUE), as illustrated in figure 2.12. This property is known as the Gauss–
Markov theorem. For proof of this theorem assumptions 1-8 are used, as can be seen in 
appendix 2.6. This set of assumptions is known as the Gauss–Markov assumptions. 

 
FIGURE 2.12. The OLS estimator is BLUE. 

Estimating the disturbance variance and the variance of estimators 

We do not know what the value of the disturbance variance, σ2, is and thus we 
have to estimate it. But we cannot estimate it from the disturbances ui, because they are 
not observable. Instead, we have to use the OLS residuals (ûi). 

The relation between disturbances and residuals is given by 

 ( ) ( )
1 2 1 2

1 1 2 2

ˆ ˆˆ ˆ
ˆ ˆ

i i i i i i

i i

u y y x u x

u x

β β β β

β β β β

= − = + + − −

= − − − −
 (2-65) 

Hence ûi is not the same as ui, although the difference between them-

( ) ( )1 1 2 2
ˆ ˆ

ixβ β β β− − − - does have an expected value of zero. Therefore, a first estimator 

of σ2 could be the residual variance: 
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However, this estimator is biased, essentially because it does not account for the 
two following restrictions that must be satisfied by the OLS residuals in the simple 
regression model: 
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One way to view these restrictions is the following: if we know n–2 of the 
residuals, we can get the other two residuals by using the restrictions implied by the 
normal equations. 

Thus, there are only n–2 degrees of freedom in the OLS residuals, as opposed to 
n degrees of freedom in the disturbances. In the unbiased estimator of σ2 shown below an 
adjustment is made taking into account the degrees of freedom: 
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Under assumptions 1-8 (Gauss-Markov assumptions), and as can be seen in 
appendix 7, we obtain 

 2 2ˆ( )E σ σ=  (2-69) 

If 2σ̂  is plugged into the variance formulas, we then have unbiased estimators of 
var( 1̂β ) and var( 2β̂ ) 

The natural estimator of σ is 2ˆ ˆσ σ=  and is called the standard error of the 
regression. The square root of the variance of 2β̂

 
is called the standard deviation of 2β̂ , 

that is to say, 
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 (2-70) 

Therefore, its natural estimator is called the standard error of 2β̂ : 
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 (2-71) 

Note that 2
ˆ( )se β , due to the presence of the estimator σ̂  in (2-71), is a random 

variable as is 2β̂ . The standard error of any estimate gives us an idea of how precise the 
estimator is. 

Consistency of OLS and other asymptotic properties 
Sometimes it is not possible to obtain an unbiased estimator. In any case 

consistency is a minimum requirement for an estimator. According to an intuitive 
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approach, consistency means that as n → ∞ , the density function of the estimator 
collapses to the parameter value. This property can be expressed for the estimator 2β̂  as: 

 2 2
ˆplim

n
 β β

→∞
=  (2-72) 

where plim means probability limit. In other words, 2β̂  converges in probability to β2. 

Note that the properties of unbiasedness and consistency are conceptually 
different. The property of unbiasedness can hold for any sample size, whereas consistency 
is strictly a large-sample property or an asymptotic property. 

Under assumptions 1 through 6, the OLS estimators, 1̂β  and 2β̂ , are consistent. 

The proof for 2β̂  can be seen in appendix 2.8. 

Other asymptotic properties of 1̂β  and 2β̂ : Under the Gauss-Markov assumptions 

1 through 8, 1̂β  and 2β̂  are asymptotically normally distributed and also asymptotically 
efficient within the class of consistent and asymptotically normal estimators. 

OLS estimators are maximum likelihood estimators (ML) and minimum variance 
unbiased estimators (MVUE) 

Now we are going to introduce the assumption 9 on normality of the disturbance 
u. The set of assumptions 1 through 9 is known as the classical linear model (CLM) 
assumptions. 

Under the CLM assumptions, the OLS estimators are also maximum likelihood 
estimators (ML), as can be seen in appendix 2.8. 

On the other hand, under CLM assumptions, OLS estimators are not only BLUE, 
but are the minimum variance unbiased estimators (MVUE). This means that OLS 
estimators have the smallest variance among all unbiased, linear o nonlinear, estimators, 
as can be seen in figure 2.13. Therefore, we have no longer to restrict our comparison to 
estimators that are linear in the yi’s. 

What also happens is that any linear combination of 1 2 3
ˆ ˆ ˆ ˆ, , , , kβ β β β  is also 

normally distributed, and any subset of the ˆ
jβ ’s has a joint normal distribution. 

 
FIGURE 2.13. The OLS estimator is the MVUE. 

In conclusion, we have seen that the OLS estimator has very desirable properties 
when the statistical basic assumptions are met. 
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Exercises 

Exercise 2.1 The following model has been formulated to explain the annual sales (sales) 
of manufacturers of household cleaning products based as a function of a relative price 
index (rpi): 

1 2sales rpi uβ β= + +  

where the variable sales is expressed in a thousand million euros and rpi is an 
index obtained as the ratio between the prices of each firm and prices of the firm 1 of the 
sample). Thus, the value 110 in firm 2 indicates its price is 10% higher than in firm1. 
 

Data on ten manufacturers of household cleaning products are the following: 
firm sales rpi 

1 10 100 
2 8 110 
3 7 130 
4 6 100 
5 13 80 
6 6 80 
7 12 90 
8 7 120 
9 9 120 

10 15 90 
a) Estimate β1 and β2 by OLS. 
b) Calculate the RSS.  
c) Calculate the coefficient of determination.  
d) Check that the algebraic implications 1, 3 and 4 are fulfilled in the OLS 

estimation. 

Exercise 2.2 To study the relationship between fuel consumption (y) and flight time (x) 
of an airline, the following model is formulated: 

1 2y x uβ β= + +  
where y is expressed in thousands of pounds and x in hours, using fractions of an hour as 
units of low-order decimal. 

The statistics of "Flight times and fuel consumption" of an airline provides data 
on flight times and fuel consumption of 24 different trips made by an aircraft of the 
company. From these data the following statistics were drawn: 

iy =∑ 219.719; ix =∑ 31.470; 2
ix =∑ 51.075;  

i ix y =∑ 349.486; 2
iy =∑ 2396.504 

a) Estimate β1 and β2 by OLS. 
b) Decompose the variance of the variable y invariance explained by the 

regression and residual variance. 
c) Calculate the coefficient of determination.  
d) Estimate total consumption, in thousands of pounds, for a flight program 

consisting of 100 half-hour flights, 200 one hour flights and 100 two hours 
flights. 
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Exercise 2.3 An analyst formulates the following model:  

1 2y x uβ β= + +  
Using a given sample, the following results were obtained: 
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Are these results consistent? Explain your answer. 

Exercise 2.4 An econometrician has estimated the following model with a sample of five 
observations:  

b b= + +1 2i i iy x u  
Once the estimation has been made, the econometrician loses all information 

except what appears in the following table: 
Obs. ix  ˆtu  

1 1 2 
2 3 -3 
3 4 0 
4 5 ¿? 
5 6 ¿? 

With the above information the econometrician must calculate the residual 
variance. Do it for them. 

Exercise 2.5 Given the model 

1 2       1 1, 2, ,i i iy x u nβ β= + + =   

the following results with a sample size of 11 were obtained: 
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a) Estimate 2β  and 1β  
b) Calculate the sum of square residuals. 
c) Calculate the coefficient of determination. 
d) Calculate the coefficient of determination under the assumption that 

22F BE=  

Exercise 2.6 Company A is dedicated to mounting prefabricated panels for industrial 
buildings. So far, the company has completed eight orders, in which the number of square 
meters of panels and working hours employed in the assembly are as follows:  

Number of square meters 
(thousands) Number of hours 

4 7400 
6 9800 
2 4600 
8 12200 

10 14000 
5 8200 
3 5800 
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12 17000 

Company A wishes to participate in a tender to mount 14000m2 of panels in a 
warehouse, for which a budget is required. 

In order to prepare the budget, we know the following:  
a) The budget must relate exclusively to the assembly costs, since the 

material is already provided. 
b) The cost of the working hour for Company A is 30 euros. 
c) To cover the remaining costs, Company A must charge 20% on the total 

cost of labor employed in the assembly. 
Company A is interested in participating in the tender with a budget that only 

covers the costs. Under these conditions, and under the assumption that the number of 
hours worked is a linear function of the number of square meters of panels mounted, what 
would be the budget provided by company A? 

Exercise 2.7 Consider the following equalities:  
1. E[u] = 0. 
2. E[ȗ] = 0. 
3. u = 0. 

4. û = 0. 
In the context of the basic linear model, indicate whether each of the above 

equalities are true or not. Justify your answer. 

Exercise 2.8 The parameters β1 and β2 of the following model have been estimated by 
OLS: 

1 2y x uβ β= + +  
A sample of size 3 was used and the observations for xi were {1,2,3}. It is also 

known that the residual for the first observation was 0.5. 
From the above information, is it possible to calculate the sum of squared residuals 

and obtain an estimate of σ2? If so, carry out the corresponding calculations. 

Exercise 2.9 The following data are available to estimate a relationship between y and x: 
y x 
-2 -2 
-1 0 
0 1 
1 0 
2 1 

a) Estimate the parameters α and β of the following model by OLS:  
y xα β ε= + +  

b) Estimate var(εi). 
c) Estimate the parameters γ and δ of the following model by OLS: 

x yγ δ υ= + +  
d) Are the two fitted regression lines the same? Explain the result in terms 

of the least-square method. 



INTRODUCTION TO ECONOMETRICS 

44 
 

Exercise 2.10 Answer the following questions: 
a) One researcher, after performing the estimation of a model by OLS, 

calculates ˆiu∑  and verifies that it is not equal to 0. Is this possible? Are 
there any conditions in which this may occur? 

b) Obtain an unbiased estimator of σ2, indicating the assumption you have 
to use. Explain your answer. 

Exercise 2.11 In the context of a linear regression model 

1 2y x uβ β= + +  
a) Indicate whether the following equalities are true. If so explain why 

[ ] [ ]1 1

ˆ
ˆ0;           =0;            =0;           =0;      

n n

i i
i i

i i i

u u
u u E x u E u

n n
= == = =
∑ ∑

 

b) Establish the relationship between the following expressions: 
2

2 2 2 ˆ
ˆ= ;                   =    i

i

u
E u

n k
σ σ   −

∑  

Exercise 2.12 Answer the following questions: 
a) Define the probabilistic properties of OLS estimator under the basic 

assumptions of the linear regression model. Explain your answer. 
b) What happens with the estimation of the linear regression model if the 

sample variance of the explanatory variable is null? Explain your answer. 

Exercise 2.13 A researcher believes that the relationship between consumption (cons) 
and disposable income (inc) should be strictly proportional, and, therefore formulates the 
following model: 

cons=β2inc+u 
a) Derive the formula for estimating β2. 
b) Derive the formula for estimating σ2

. 

c) In this model, is 
1

ˆ
n

i
i

u
=
å equal to 0? 

Exercise 2.14 In the context of the simple linear regression model 

1 2y x uβ β= + +  
a) What assumptions must be met for the OLS estimators to be unbiased?  
b) What assumptions are required for the estimators with variances which are 

the lowest within the set of linear unbiased estimators? 

Exercise 2.15 In statistical terms it is often usual to make statements like the following: 
"Let x2,… xn, be a random sample of size n drawn from a population N(α,σ)" 

a) Express the previous statement with econometric language by introducing 
a disturbance term. 

b) Derive the formula for estimating α. 
c) Derive the formula for estimating σ2. 
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d) In this model, is 
1

ˆ
n

i
i

u
=
å equal to 0? 

Exercise 2.16 The following model relates expenditure on education (exped) and 
disposable income (inc): 

exped=β1+β2inc+u 
Using the information obtained from a sample of 10 families, the following results 

have been obtained: 
10 10 10

2 2

1 1 1

7   50   30.650   622   4.345i i i i
i i i

exped inc inc exped inc exped
= = =

= = = = ´ =å å å  

a) Estimate β1 and β2 by OLS. 
b) Estimate the expenditure on education/ income elasticity for the sample 

average family. 
c) Decompose the variance of the endogenous variable invariance explained 

by the regression and residual variance. 
d) Calculate the coefficient of determination. 
e) Estimate the variance of the disturbances. 

Exercise 2.17 Given the population model 
yi=3+2xi+ui  i= 1, 2, 3 

where xi={1,2,3}:  
a) Using N(0,1) random number, generate 15 samples of u1, u2 and u3, and 

obtain the corresponding values of y 
b) Carry out the corresponding estimates of β1 and β2 in the model: 

1 2y x uβ β= + +  

c) Compare the sample means and variances of 1̂β y 2β̂  with their population 
expectations and variances.  

Exercise 2.18 Based on the information supplied in exercise 2.17, and the 15 pairs of 
estimates of β1 and β2 obtained:  

a) Calculate the residuals corresponding to each of the estimates.  
b) Show why the residuals always take the form 

1 2

3

ˆ ˆ
ˆ 0
u u
u

= −
=  

Exercise 2.19 The following model was formulated to explain sleeping time (sleep) as a 
function of time devoted to paid work (paidwork): 

1 2sleep paidwork uβ β= + +  
where sleep and paidwork are measured in minutes per day. 

Using a random subsample extracted from the file timuse03, the following results 
were obtained 

· 550.17 0.1783isleep paidwork-=  
R2= 0.2539      n=62 
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a) Interpret the coefficient on paidwork. 
b) What is, on average, the predicted increment in sleep if time devoted to 

paid work decreases in an hour per day?  
c) How much of the variation in sleep is explained by paidwork? 

Exercise 2.20 Quantifying happiness is not an easy task. Researchers at the Gallup World 
Poll went about it by surveying thousands of respondents in 155 countries, between 2006 
and 2009, in order to measure two types of well-being. They asked respondents to report 
on the overall satisfaction with their lives, and ranked their answers using a "life 
evaluation" score from 1 to 10. To explain the overall satisfaction (stsfglo) the following 
model has been formulated, where observations are averages of the variables in each 
country: 

1 2stsfglo lifexpec uβ β= + +  
where lifexpec is life expectancy at birth: that is to say, number of years a newborn infant 
is expected to live. 

Using the work file HDR2010, the fitted model obtained is the following: 
· 1.499 0.1062stsfglo lifexpec= − +  

R2= 0.6135      n=144 
a) Interpret the coefficient on lifexpec. 
b) What would be the average overall satisfaction for a country with 80 years 

of life expectancy at birth? 
c) What should be the life expectancy at birth to obtain a global satisfaction 

equal to six? 

Exercise 2.21 In economics, Research and Development intensity (or simply R&D 
intensity) is the ratio of a company's investment in Research and Development compared 
to its sales.  

For the estimation of a model which explains R&D intensity, it is necessary to 
have an appropriate database. In Spain it is possible to use the Survey of Entrepreneurial 
Strategies (Encuesta sobre Estrategias Empresariales) produced by the Ministry of 
Industry. This survey, on an annual basis, provides in-depth knowledge of the industrial 
sector's evolution over time by means of multiple data concerning business development 
and company decisions. This survey is also designed to generate microeconomic 
information that enables econometric models to be specified and tested. As far as its 
coverage is concerned, the reference population of this survey is companies with 10 or 
more workers from the manufacturing industry. The geographical area of reference is 
Spain, and the variables have a timescale of one year. One of the most outstanding 
characteristics of this survey is its high degree of representativeness.  

Using the work file rdspain, which is a dataset consisting of 1,983 Spanish firms 
for 2006, the following equation is estimated to explain expenditures on research and 
development (rdintens): 

· 2.639 0.2123ln( )rdintens  sales  = - +  
R2= 0.0350      n=1983 

where rdintens is expressed as a percentage of sales, and sales are measured in millions 
of euros. 

http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Research_and_Development
http://en.wikipedia.org/wiki/Sales
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a) Interpret the coefficient on ln(sales).  
b) If sales increase by 50%, what is the estimated percentage point change in 

rdintens?  
c) What percentage of the variation of rdintens is explained by sales? Is it 

large? Justify your answer. 

Exercise 2.22 The following model has been formulated to explain MBA graduated 
salary (salMBAgr) as a function of tuition fees (tuition) 

1 2salMBAgr tuition uβ β= + +  
where salMBApr is the median annual salary in dollars for students enrolled in 2,010 of 
the 50 best American business schools and tuition is tuition fees including all required 
fees for the entire program (but excluding living expenses).  

Using the data in MBAtui10, this model is estimated: 
· 54242 0.4313i isalMBAgr tuition= +  

R2=0.4275      n=50 
a) What is the interpretation of the intercept?  
b) What is the interpretation of the slope coefficient? 
c) What is the predicted value of salMBAgr for a graduate student who paid 

110000$ tuition fees in a 2 years MBA?  

Exercise 2.23 Using a subsample of the Structural Survey of Wages (Encuesta de 
estructura salarial) for Spain in 2006 (wage06sp), the following model is estimated to 
explain wages: 

·ln( ) 1.918 0.0527wage educ= +  
R2=0.2445       n=50 

where educ (education) is measured in years and wage in euros per hour. 
a) What is the interpretation of the coefficient on educ? 
b) How many more years of education are required to have a 10% higher 

wage? 
c) Knowing that 10.2educ = , calculate the wage/education elasticity. Do you 

consider this elasticity to be high or low? 

Exercise 2.24 Using data from the Spanish economy for the period 1954-2010 (work file 
consump), the Keynesian consumption function is estimated:  

· 288 0.9416t tconspc incpc= − +  
R2=0.994      n=57 

where consumption (conspc) and disposable income (incpc) are expressed in 
constant euros per capita, taking 2008 as reference year. 

a) What is the interpretation of the intercept? Comment on the sign and 
magnitude of the intercept. 

b) Interpret the coefficient on incpc. What is the economic meaning of this 
coefficient?  
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c) Compare the marginal propensity to consume with the average propensity 
to consume at the sample mean ( 8084,conspc = 8896)incpc = . Comment 
on the result obtained. 

d) Calculate the consumption/income elasticity for the sample mean. 

Annex 2.1 Case study: Engel curve for demand of dairy products 
The Engel curve shows the relationship between the various quantities of a good 

that a consumer is willing to purchase at varying income levels.  
In a survey with 40 households, data were obtained on expenditure on dairy 

products and income. These data appear in table 2.6 and in work file demand. In order to 
avoid distortions due to the different size of households, both consumption and income 
have been expressed in terms of per capita. The data are expressed in thousands of euros 
per month. 

There are several demand models. We will consider the following models: linear, 
inverse, semi-logarithmic, potential, exponential and inverse exponential. In the first three 
models, the regressand of the equation is the endogenous variable, whereas in the last 
three the regressand is the natural logarithm of the endogenous variable.  

In all the models we will calculate the marginal propensity to expenditure, as well 
as the expenditure/income elasticity. 

TABLE 2.6. Expenditure on dairy products (dairy), disposable income (inc) in terms of per 
capita. Unit: euros per month. 

household dairy inc household dairy inc 
1 8.87 1.250 21 16.20 2.100 
2 6.59 985 22 10.39 1.470 
3 11.46 2.175 23 13.50 1.225 
4 15.07 1.025 24 8.50 1.380 
5 15.60 1.690 25 19.77 2.450 
6 6.71 670 26 9.69 910 
7 10.02 1.600 27 7.90 690 
8 7.41 940 28 10.15 1.450 
9 11.52 1.730 29 13.82 2.275 

10 7.47 640 30 13.74 1.620 
11 6.73 860 31 4.91 740 
12 8.05 960 32 20.99 1.125 
13 11.03 1.575 33 20.06 1.335 
14 10.11 1.230 34 18.93 2.875 
15 18.65 2.190 35 13.19 1.680 
16 10.30 1.580 36 5.86 870 
17 15.30 2.300 37 7.43 1.620 
18 13.75 1.720 38 7.15 960 
19 11.49 850 39 9.10 1.125 
20 6.69 780 40 15.31 1.875 

Linear model 
The linear model for demand of dairy products will be the following: 

 1 2dairy inc uβ β= + +  (2-73) 
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The marginal propensity indicates the change in expenditure as income varies and 
it is obtained by differentiating the expenditure with respect to income in the demand 
equation. In the linear model the marginal propensity of the expenditure on dairy is given 
by 

 2
 
 

d dairy
d inc

β=  (2-74) 

In other words, in the linear model the marginal propensity is constant and, 
therefore, it is independent of the value that takes the income. It has the disadvantage of 
not being adapted to describe the behavior of the consumers, especially when there are 
important differences in the household income. Thus, it is unreasonable that the marginal 
propensity of expenditure on dairy products is the same in a low-income family and a 
family with a high income. However, if the variation of the income is not very high in the 
sample, a linear model can be used to describe the demand of certain goods. 

In this model the expenditure/income elasticity is the following: 

 / 2
 
 

linear
dairy inc

d dairy inc inc
d inc dairy dairy

ε β= =  (2-75) 

Estimating the model (2-73) with the data from table 2.6, we obtain 

 · 24.012 0.005288      0.4584dairy inc R= + ´ =  (2-76) 

Inverse model 
In an inverse model there is a linear relationship between the expenditure and the 

inverse of income. Therefore, this model is directly linear in the parameters and it is 
expressed in the following way: 

 1 2
1dairy u

inc
β β= + +  (2-77) 

The sign of the coefficient 2β  will be negative if the income is correlated 
positively with the expenditure. It is easy to see that, when the income tends towards 
infinite, the expenditure tends towards a limit which is equal to β1. In other words, β1 
represents the maximum consumption of this good. 

In figure 2.14, we can see a double representation of the population function 
corresponding to this model. In the first one, the relationship between the dependent 
variable and explanatory variable has been represented. In the second one, the relationship 
between the regressand and regressor has been represented. The second function is linear 
as can be seen in the figure. 
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Figure 2.14. The inverse model. 

In the inverse model, the marginal propensity to expenditure is given by 

 2 2

 1
 ( )

d dairy
d inc inc

β= −  (2-78) 

According to (2-78), the marginal propensity is inversely proportional to the 
square of the income level. 

On the other hand, the elasticity is inversely proportional to the product of 
expenditure and income, as can be seen in the following expression: 

 / 2
 1
 

inv
dairy inc

d dairy inc
d inc dairy inc dairy

ε β= = −
×

 (2-79) 

Estimating the model (2-77) with the data of table 2.6, we obtain 

 · 2118.652 8702      0.4281dairy R
inc

= - =  (2-80) 

In this case the coefficient 
2β̂  does not have an economic meaning. 

Linear-log model 
This model is denominated linear-log model, because the expenditure is a linear 

function of the logarithm of income, that is to say, 

 1 2 ln( )dairy inc uβ β= + +  (2-81) 

In this model the marginal propensity to expenditure is given by 

 2
   1 1
  ln( )

d dairy d dairy inc d dairy
d inc d inc inc d inc inc inc

β= = =  (2-82) 

and the elasticity expenditure/income is given by 

 log
/ 2

  1 1
  ln( )

lin-
dairy inc

d dairy inc d dairy
d inc dairy d inc dairy dairy

ε β= = =  (2-83) 

The marginal propensity is inversely proportional to the level of income in the 
linear-log model, while the elasticity is inversely proportional to the level of expenditure 
on dairy products. 

dairy

β1

inc

E(dairy) = β1 + β2 1/inc

dairy

1/inc
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In figure 2.15, we can see a double representation of the population function 
corresponding to this model. 

  
Figure 2.15. The linear-log model. 

Estimating the model (2-81) with the data from table 2.6, we obtain 

 · 241.623 7.399 ln( )    0.4567dairy inc R= - + ´ =  (2-84) 

The interpretation of 2β̂  is the following: if the income increases by 1%, the 
demand of dairy products will increase by 0.07399 euros. 
Log-log model or potential model 

This exponential model is defined in the following way:  

 1 2 udairy e inc eβ β=  (2-85) 

This model is not linear in the parameters, but it is linearizable by taking natural 
logarithms, and the following is obtained:  

 1 2ln( ) ln( )dairy inc uβ β= + +  (2-86) 

This model is also called log-log model, because this is the structure of the 
corresponding linearized model.  

In this model the marginal propensity to expenditure is given by 

 2
 
 

d dairy dairy
d inc inc

β=  (2-87) 

In the log-log model, the elasticity is constant. Therefore, if the income increases 
by 1%, the expenditure will increase by β2%, since 

 / 2
  ln( )
  ln( )

log-log
dairy inc

d dairy inc d dairy
d inc dairy d inc

ε β= = =  (2-88) 

In figure 2.16, we can see a double representation of the population function 
corresponding to this model. 

dairy

inc

E(dairy) = β1 + β2 ln(inc) 

dairy

ln(inc)
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Figure 2.16. The log-log model. 

Estimating the model (2-86) with the data from table 2.6, we obtain 

 · 2ln( ) 2.556 0.6866 ln( )    0.5190dairy inc R= - + ´ =  (2-89) 

In this case 
2β̂  is the expenditure/income elasticity. Its interpretation is the 

following: if the income increases by 1%, the demand of dairy products will increase by 
0.68%. 
Log-linear or exponential model 

This exponential model is defined in the following way:  

 1 2exp( )dairy inc uβ β= + +  (2-90) 

By taking natural logarithms on both sides of (2-90), we obtain the following 
model that is linear in the parameters: 

 1 2ln( )dairy inc uβ β= + +  (2-91) 

 In this model the marginal propensity to expenditure is given by 

 2
 
 

d dairy dairy
d inc

β=  (2-92) 

 In the exponential model, unlike other models seen previously, the marginal 
propensity increases when the level of expenditure does. For this reason, this model is 
adequate to describe the demand of luxury products. On the other hand, the elasticity is 
proportional to the level of income: 

 / 2
  ln( )
  

exp
dairy inc

d dairy inc d dairy inc inc
d inc dairy d inc

ε β= = =  (2-93) 

In figure 2.17, we can see a double representation of the population function 
corresponding to this model. 

dairy

inc

2
1( )E dairy incββ= ln(dairy)

ln(inc)
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Figure 2.17. The log-linear model. 

Estimating the model (2-91) with the data from table 2.6, we obtain 

 · 2ln( ) 1.694 0.00048     0.4978dairy inc R= + ´ =  (2-94) 

The interpretation of 2β̂  is the following: if the income increases by a euro the 
demand of dairy products will increase by 0.048%. 
Inverse exponential model 

The inverse exponential model, which is a mixture of the exponential model and 
the inverse model, has properties that make it suitable for determining the demand for 
products in which there is a saturation point. This model is given by 

 1 2
1exp( )dairy u

inc
β β= + +  (2-95) 

By taking natural logarithms on both sides of (2-95), we obtain the following 
model that is linear in the parameters: 

 1 2
1ln( )dairy u

inc
β β= + +  (2-96) 

In this model the marginal propensity to expenditure is given by 

 2 2

 
 ( )

d dairy dairy
d inc inc

β= −  (2-97) 

and the elasticity by 

 / 2
  ln( ) 1
  

invexp
dairy inc

d dairy inc d dairy inc
d inc dairy d inc inc

ε β= = = −  (2-98) 

Estimating the model (2-96) with the data from table 2.6, we obtain 

 · 21ln( ) 3.049 822.02      0.5040dairy R
inc

= - =  (2-99) 

In this case, as in the inverse model, the coefficient 2β̂  does not have an economic 
meaning.  

In table 2.7, the results of the marginal propensity, the expenditure/income 
elasticity and R2 in the six fitted models are shown 

dairy

inc

1 2( ) incE dairy e += β β

ln(dairy)

inc
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Table 2.7. Marginal propensity, expenditure/income elasticity and R2 in the fitted models. 

Model Marginal propensity  Elasticity R2 

Linear 2β̂ =0.0053 2
ˆ inc

dairy
β =0.6505 0.4440 

Inverse 2 2
1ˆ

inc
β−

  

=0.0044 
2

1ˆ
dairy inc

β−
×

=0.5361 
0.4279 

Linear-log 2
1ˆ

inc
β =0.0052 2

1ˆ
dairy

β =0.6441 0.4566 

Log-log 2
ˆ dairy

inc
β =0.0056 

2β̂ =0.6864 0.5188 

Log-linear 2
ˆ dairyβ × =0.0055 

2
ˆ incβ × =0.6783 0.4976 

Inverse-log 2 2
ˆ dairy

inc
β−

  

=0.0047 
2

1ˆ
inc

β− =0.5815 0.5038 

 The R2 obtained in the first three models are not comparable with the R2 obtained 
in the last three because the functional form of the regressand is different: y in the first 
three models and ln(y) in the last three. 
 Comparing the first three models the best fit is obtained by the linear-log model, 
if we use the R2 as goodness of fit measure. Comparing the last three models the best fit 
is obtained by the log-log model. If we had used the Akaike Information Criterion (AIC), 
which allows the comparison of models with different functional forms for the regressand, 
then the-log-log model would have been the best among the six models fitted. The AIC 
measured will be studied in chapter 3. 

Appendixes 

Appendix 2.1: Two alternative forms to express 2β̂  

It is easy to see that 

1 1 1 1 1

1 1 1 1

( )( ) ( )
n n n n n

i i i i i i i i i i
i i i i i

n n n n

i i i i i i
i i i i

y y x x y x xy yx yx y x x y y x nyx

y x nxy y x nyx y x y x

= = = = =

= = = =

− − = − − + = − − +

= − − + = −

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

On the other hand, we have  

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1

( ) ( 2 ) 2

2

n n n n

i i i i i
i i i i

n n n

i i i
i i i

x x x xx xx x x x nxx

x nx nx x x x

= = = =

= = =

− = − + = − +

= − + = −

∑ ∑ ∑ ∑

∑ ∑ ∑
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Therefore, (2-17) can be expressed in the following way: 

1 1 1
2

2 2

1 1 1

( )( )
ˆ

( )

n n n

i i i i i
i i i

n n n

i i i
i i i

y x y x y y x x

x x x x x
β = = =

= = =

− − −
= =

− −

∑ ∑ ∑

∑ ∑ ∑
 

Appendix 2.2. Proof: 2 2
xyr R=  

First of all, we are going to see an equivalence that will be used in the proof. By 
definition, 

1 2
ˆ ˆˆi iy xβ β= +  

From the first normal equation, we have  

1 2
ˆ ˆy xβ β= +  

Subtracting the second equation from the first one: 

2
ˆˆ ( )i iy y x xβ− = −  

Squaring both sides 
2 2 2

2
ˆˆ( ) ( )i iy y x xβ− = −  

and summing for all i, we have  
2 2 2

2
ˆˆ( ) ( )i iy y x xβ− = −∑ ∑  

Taking into account the previous equivalence, we have 
2

2 2 2 2
2

12 1 1 1
2

2 2 22

1 1 11

2

1 2

2 2

1 1

ˆ ( )( )ˆ ˆ( ) ( ) ( )
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1

( ) ( )
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n

i i
i

xyn n

i i
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R

y y y y y yx x
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r

x x y y

β
== = =

= = ==

=

= =

 − −− − −  = = =
 − − −−  

 − −  = =
− −

∑∑ ∑ ∑
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∑
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Appendix 2.3. Proportional change versus change in logarithms  
Change in logarithms is a variation rate, which is used in economics research. The 

relationship between proportional change and change in logarithms can be seen if we 
expand (2-45) by Taylor series: 
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2 3
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− + 
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 (2-100) 

Therefore, if we take the linear approximation in this expansion, we have 

 1 1
1 0

0 0

ln( ) ln( ) ln( ) ln x xx x x
x x

  ∆
∆ = − = ≈ 

 
 (2-101) 

Appendix 2.4. Proof: OLS estimators are linear and unbiased 

We will only prove the unbiasedness of the estimator 2β̂ , which is the most 
important. In order to prove this, we need to rewrite our estimator in terms of the 
population parameter. The formula (2-18) can be written as 

 
( )( )

( )

( )

( )
1 1

2
2 2

1 1

ˆ

n n

i i i i
i i

n n

i i
i i

x x y y x x y

x x x x
β = =

= =

− − −
= =

− −

∑ ∑

∑ ∑
 (2-102) 

because ( ) ( )
1 1

0 0
n n

i i
i i

x x y y x x y
= =

− = − = × =∑ ∑  

Now (2-102) will be expressed in the following way: 

 2
1

ˆ
n

i i
i

c yβ
=

= ∑  (2-103) 

where  
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2

1
( )

i
i n

i
i

x xc
x x

=

−
=

−∑
 (2-104) 

The ci’s have the following properties: 

 
1

0
n

i
i

c
=

=∑  (2-105) 
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=
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==

−
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  −−  

∑
∑

∑∑
 (2-106) 

 1

21

1

( )
1

( )

n

i in
i

i i n
i

i
i

x x x
c x

x x

=

=

=

−
= =

−

∑
∑

∑
 (2-107) 

Now, if we substitute 1 2y x uβ β= + + (assumption 1) in (2-102), we have 

 
2 1 2

1 1

1 2 2
1 1 1 1

ˆ ( )
n n

i i i i i
i i

n n n n

i i i i i i i
i i i i

c y c x u

c c x c u c u

β β β

β β β

= =

= = = =

= = + +

= + + = +

∑ ∑

∑ ∑ ∑ ∑
 (2-108) 

Since the regressors are assumed to be nonstochastic (assumption 2), the ci are 
nonstochastic too. Therefore, 2β̂  is an estimator that is a linear function of u’s. 

Taking expectations in (2-108) and taking into account assumption 6, and 
implicitly assumptions 3 through 5, we obtain 

 2 2 2
1

ˆ( ) ( )
n

i i
i

E c E uβ β β
=

= + =∑  (2-109) 

Therefore, 2b̂  is an unbiased estimator of 2β  

Appendix 2.5. Calculation of variance of 2β̂ : 

 

2
2 2 2

2 2
1 1 1

2 2 2
2

2
21

1

ˆ ( ) ( )

( )

n n n

i i i i i j i j
i i i j i

n
i

n
i X

i
i

E c u c E u c c E u u

c
nSx x

β β

σ σσ

= = ≠ =

=

=

  − = = +    

= =
= −

∑ ∑ ∑∑

∑
∑

 (2-110) 

In the above proof, to pass from the second to the third equality, we have taken 
into account assumptions 6 and 7. 
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Appendix 2.6. Proof of Gauss-Markov Theorem for the slope in simple regression 
The plan for the proof is the following. First, we are going to define an arbitrary 

estimator 2β  which is linear in y. Second, we will impose restrictions implied by 
unbiasedness. Third, we will show that the variance of the arbitrary estimator must be 
larger than, or at least equal to, the variance of 2β̂ . 

Let us define an arbitrary estimator 2β  which is linear in y: 

 2
1

n

i i
i

h yβ
=

= ∑  (2-111) 

Now, we substitute yi by its value in the population model (assumption 1): 

 2 1 2 1 2
1 1 1 1 1

( )
n n n n n

i i i i i i i i i i
i i i i i

h y h x u h h x h uβ β β β β
= = = = =

= = + + = + +∑ ∑ ∑ ∑ ∑  (2-112) 

For the estimator 2β  to be unbiased, the following restrictions must be 
accomplished: 

 
1

0
n

i
i

h
=

=∑
                     1

1
n

i i
i

h x
=

=∑  (2-113) 

Therefore, 

 2 2
1

n

i i
i

h uβ β
=

= + ∑  (2-114) 

The variance of this estimator is the following: 
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= =
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=

= =

  − = = =    

   
   − − −
   − + = −
   − − −      

  
  − −
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∑ ∑ ∑
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∑ ∑


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n
i

i
i

x x

x x=

=


 −

 
  − 

∑
∑

 (2-115) 

The third term of the last equality is 0, as shown below: 
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∑ ∑

∑ ∑
∑ ∑

 (2-116) 

Therefore, taking into account (2-116) and operating, we have  

 [ ]
2

2 2 2
2 2

21

1

1

( )

n

i i n
i

i
i

E h c
x x

β β σ σ
=

=

 − = − + 
−

∑
∑

  (2-117) 

where 
2

1
( )

i
i n

i
i

x xc
x x

=

−
=

−∑
 

The second term of the last equality is the variance of 2β̂ , while the first term is 
always positive because it is a sum of squares, except that hi=ci, for all i, in which case it 
is equal to 0, and then 2 2

ˆβ β= . So,  

 
22

2 2 2 2
ˆE Eβ β β β  − ≥ −   

  (2-118) 

Appendix 2.7. Proof: 2σ) is an unbiased estimator of the variance of the disturbance 
The population model is by definition: 

 1 2i i iy x uβ β= + +  (2-119) 

If we sum up both sides of (2-119) for all i and divide by n, we have  

 1 2y x uβ β= + +  (2-120) 

Subtracting (2-120) from (2-119), we have  

 ( ) ( )2i i iy y x x u uβ− = − + −  (2-121) 

On the other hand, ˆiu  is by definition: 

 1 2
ˆ ˆˆi i iu y xβ β= − −  (2-122) 

If we sum up both sides of (2-122) for all i and divide by n, we have  

 1 2
ˆ ˆû y xβ β= − −  (2-123) 

Subtracting (2-123) from (2-122), and taking into account that û =0, 
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 ( ) ( )2 1
ˆˆi iu y y x xβ= − − −  (2-124) 

Substituting (2-121) in (2-124), we have  

 
( ) ( ) ( )

( )( ) ( )
2 2 1

2 2 1

ˆˆ

ˆ
i i i

i

u x x u u x x

x x u u

β β

β β

= − + − − −

= − − − + −
 (2-125) 

Squaring and summing up both sides of (2-125), we have  

 

22 2 2
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1 1 1
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u x x u u
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 − − − − 

∑ ∑ ∑

∑




 (2-126) 

Taking expectation in (2-126), we obtain  
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n
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∑
∑



  (2-127) 

To obtain the first term of the last equality of (2-127), we have used (2-64). In 
(2-128) and (2-129), you can find the developments used to obtain the second and the 
third term of the last equality of (2-127) respectively. In both cases, assumptions 7 and 8 
have been taken into account. 
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∑
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 (2-128) 
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 (2-129) 
According to (2-127), we have  

 ( )2 2

1

ˆ 2
n

i
i

E u n σ
=

  = −  
∑  (2-130) 

Therefore, an unbiased estimator is given by 
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 (2-131) 

such as 

 ( )2 2 2

1

1ˆ ˆ
2

n

i
i

E E u
n

σ σ
=

 = = −  
∑  (2-132) 

Appendix 2.8. Consistency of the OLS estimator 
The operator plim has the in variance property (Slutsky property). That is to say, 

if θ̂  is a consistent estimator of θ and if ( )ˆg θ
 
is any continuous function of θ̂ , then 

 ˆplim ( ) ( )
n

 g gθ θ
→∞

=  (2-133) 

This means is that if θ̂ is a consistent estimator of θ, then 1/θ̂ and ln(θ̂ ) are also 
consistent estimators of 1/θ and ln(θ) respectively. Note that these properties do not hold 
true for the expectation operator E; for example, ifθ̂ is an unbiased estimator of θ [that is 
to say, E(θ̂ )=θ], it is not true that 1/θ̂ is an unbiased estimator of 1/θ; that is, E(1/θ̂ ) ≠
1/E(θ̂ ) ≠ 1/θ. This is due to the fact that the expectation operator can be only applied to 
linear functions of random variables. On the other hand, the plim operator is applicable 
to any continuous functions. 

Under assumptions 1 through 6, the OLS estimators, 1̂β  and 2β̂ , are consistent. 
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Now we are going to prove that 2β̂  is a consistent estimator. First, 2β̂  can be 
expressed as: 
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 (2-134) 

In order to prove consistency, we need to take plim´s in (2-134) and apply the Law 
of Large Numbers. This law states that under general conditions, the sample moments 
converge to their corresponding population moments. Thus, taking plim´s in (2-134): 
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∑ ∑

∑ ∑
 (2-135) 

In the last equality we have divided the numerator and denominator by n, because 
if we do not do so, both summations will go to infinity when n goes to infinity.. 

If we apply the law of large numbers to the numerator and denominator of (2-135), 
they will converge in probability to the population moments cov(x,u) and var(x) 
respectively. Provided var(x)≠0 (assumption 4), we can use the properties of the 
probability limits to obtain 

 2 2 2
( , )ˆplim  
( )

cov x u
var x

β β β= + =  (2-136) 

To reach the last equality, using assumptions 2 and 6, we obtain  

 [ ] [ ]( , ) ( ) ( ) ( ) 0 0cov x u E x x u x x E u x x= − = − = − × =  (2-137) 

Therefore, 2β̂  is a consistent estimator. 

Appendix 2.9 Maximum likelihood estimator 
Taking into account assumptions 1 through 6 the expectation of yi is the following: 

 1 2( )i iE y xβ β= +  (2-138) 

If we take into account assumptions 7, the variance of yi is equal to  

 [ ] [ ] [ ]2 2 2 2
1 2var( ) ( )     i i i i i iy E y E y E y x E u iβ β σ= − = − + = = ∀  (2-139) 

According to assumption 1, yi is a linear function of ui, and if ui has a normal 
distribution (assumption 9), then yi will be normally and independently (assumption 8) 
distributed with mean 1 2 ixβ β+  and variance σ2. 
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Then, the joint probability density function of 1 2, , , ny y y  can be expressed as a 
product of n individual density functions: 
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β β σ β β σ β β σ

+
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 (2-140) 

where 

 ( ) [ ]2
1 2

2

1 1exp
22

i i
i

y x
f y

β β
σσ π

 − − = − 
  

 (2-141) 

which is the density function of a normally distributed variable with the given mean and 
variance. 

Substituting (2-141) into (2-140)for each yi, we obtain 
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 (2-142) 

If 1 2, , , ny y y are known or given, but β2, β3, and σ2 are not known, the function 
in (2-142) is called a likelihood function, denoted by L(β2, β3, σ2) or simply L. If we take  
natural logarithms in (2-142), we obtain 
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 (2-143) 

The maximum likelihood (ML) method, as the name suggests, consists in 
estimating the unknown parameters in such a manner that the probability of observing the 
given yi‘s is as high (or maximum) as possible. Therefore, we have to find the maximum 
of the function (2-143). To maximize (2-143) we must differentiate with respect to β2, β3, 
and σ2 and equal to 0. If 1β , 2β  and 2σ denote the ML estimators, we obtain: 
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 (2-144) 

If we take the first two equations of (2-144) and operate, we have 

 1 2i iy n xβ β= +∑ ∑   (2-145) 
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 2
1 2i i i iy x x xβ β= +∑ ∑ ∑   (2-146) 

As can be seen, (2-145) and (2-146) are equal to (2-13) and (2-14). That is to say, 
the ML estimators, under the CLM assumptions, are equal to the OLS estimators.  

Substituting 1β  and 2β , obtained solving (2-145) and (2-146), in the third 
equation of (2-144), we have  

 ( ) ( )222 2
1 2 1 2

1 1 1ˆ ˆ ˆi i i i iy x y x u
n n n

σ β β β β= − − = − − =∑ ∑ ∑   (2-147) 

The ML estimator for 2σ  is biased, since, according to (2-127), 

 2 2 2

1

1 2ˆ(
n

i
i

nE E u
n n

σ σ
=

− ) = =  
∑  (2-148) 

In any case, 2σ  is a consistent estimator because 
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2lim 1
n
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−
=  (2-149) 
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3 MULTIPLE LINEAR REGRESSION: ESTIMATION AND 
PROPERTIES 

3.1 The multiple linear regression model 
The simple linear regression model is not adequate for modeling many economic 

phenomena, because in order to explain an economic variable it is necessary to take into 
account more than one relevant factor. We will illustrate this with some examples. 

In the Keynesian consumption function, disposable income is the only relevant 
variable: 

 1 2cons inc uβ β= + +  (3-1) 

However, there are other factors that may be considered relevant in consumer 
behavior. One of these factors could be wealth. By including this factor, we will have a 
model with two explanatory variables: 

 1 2 3cons inc wealth uβ β β= + + +  (3-2) 

In the analysis of production, a potential function is often used, which can be 
transformed into a linear model in the parameters with an adequate specification (taking 
natural logs). Using a single input -labor- a model of this type would be specified as 
follows: 

 1 2ln( ) ln( )output labor uβ β= + +  (3-3) 

The previous model is clearly insufficient for economic analysis. It would be 
better to use the well-known Cobb-Douglas model that considers two inputs (labor and 
capital): 

 1 2 3ln( ) ln( ) ln( )output labor capital uβ β β= + + +  (3-4) 

According to microeconomic theory, total costs (costot) are expressed as a 
function of the quantity produced (quantprod). A first approximation to explain the total 
costs could be a model with only one regresor: 

 1 2costot quantprod uβ β= + +  (3-5) 

However, it is very restrictive considering that, as would be the case with the 
previous model, the marginal cost remains constant regardless of the quantity produced. 
In economic theory, a cubic function is proposed, which leads to the following 
econometric model: 



MULTIPLE LINEAR REGRESSION 

67 
 

 2 3
1 2 3 4costot quantprod quantprod quantprod uβ β β β= + + + +

 (3-6) 
In this case, unlike the previous ones, only one explanatory variable is considered, 

but with three regressors. 
Wages are determined by several factors. A relatively simple model could explain 

wages using years of education and years of experience as explanatory variables: 

 1 2 3wages educ exper uβ β β= + + +  (3-7) 

Other important factors to explain wages received can also be quantitative 
variables such as training and age, or qualitative variables, such as sex, industry, and so 
on.  

Finally, in explaining the expenditure on fish relevant factors are the price of fish, 
the price of a substitutive commodity such as meat, and disposable income: 

 1 2 3 4fishexp fishprice meatprice income uβ β β β= + + + +  (3-8) 

Thus, the above examples highlight the need for using multiple regression models. 
The econometric treatment of the simple regression model was made with ordinary 
algebra. The treatment of an econometric model with two explanatory variables by using 
ordinary algebra is tedious and cumbersome. Moreover, a model with three explanatory 
variables is virtually intractable with this tool. For this reason, the regression model will 
be presented using matrix algebra.  

3.1.1 Population regression model and population regression function 
In the model of multiple linear regression, the regressand (which can be either the 

endogenous variable or a transformation of the endogenous variables) is a linear function 
of k regressors corresponding to the explanatory variables -or their transformations - and 
of a random disturbance or error. The model also has an intercept. Designating the 
regressand by y, the regressors by x2, x3,..., xk and the disturbance –or the random 
disturbance- by u, the population model of multiple linear regression is given by the 
following expression:  

 1 2 2 3 3 +k ky x x x uβ β β β= + + + +L  (3-9) 

The parameters 1 2 3, , , , kβ β β βL  are fixed and unknown. 

On the right hand of (3-9) we can distinguish two parts: the systematic component 
1 2 2 3 3 k kx x xβ β β β+ + + +L  and the random disturbance u. Calling µy to the systematic 

component, we can write: 

 1 2 2 3 3y k kx x xµ β β β β= + + + +  (3-10) 

This equation is known as the population regression function (PRF) or population 
hyperplane. When k=2 the PRF is specifically a straight line; when k=3 the PRF is 
specifically a plane; finally, when k>3 the PRF is generically denominated hyperplane. 
This cannot to be represented in a three dimension space. 
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According to (3-10), µy is a linear function of the parameters 1 2 3, , , , kβ β β βL . 
Now, let us suppose we have a random sample of size n 

2 3{(  , , , , ) :    1, 2, , }i i i kiy x x x i n=L L  extracted from the population studied. If we write 
the population model for all observations of the sample, the following system is obtained: 

 

1 1 2 21 3 31 1 1

2 1 2 22 3 32 2 2

1 2 2 3 3

                                     

k k

k k

n n n k kn n

y x x x u
y x x x u

y x x x u

β β β β
β β β β

β β β β

= + + + + +
= + + + + +

= + + + + +

L
L

L L L L
L

 (3-11) 

The previous system of equations can be expressed in a compact form by using 
matrix notation. Thus, we are going to denote 
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The matrix X is called the matrix of regressors. Also included among the 
regressors is the regressor corresponding to the intercept. This one, which is often called 
dummy regressor, takes the value 1 for all the observations.  

The model of multiple linear regression (3-11) expressed in matrix notation is the 
following: 

 

1
1 21 31 1 1

2
2 22 32 2 2
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2 3
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k
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 (3-12) 

If we take into account the denominations given to vectors and matrices, the model 
of multiple linear regression can be expressed in the following way: 

 y = X + uβ  (3-13) 

where y is a vector 1n× , X is a matrix n k× , β  is a vector 1k ×  and u is a vector 1n× .  

3.1.2 Sample regression function 
The basic idea of regression is to estimate the population parameters, 

1 2 3, , , , kβ β β βL from a given sample. 

The sample regression function (SRF) is the sample counterpart of the population 
regression function (PRF). Since the SRF is obtained for a given sample, a new sample 
will generate different estimates. 

The SRF, which is an estimation of the PRF, is given by  
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 1 2 2 3 3
ˆ ˆ ˆ ˆˆ           1, 2, ,i i i k kiy x x x i nβ β β β= + + + + =L L  (3-14) 

The above expression allows us to calculate the fitted value ( ˆiy ) for each yi. In the 

SRF 1 2 3
ˆ ˆ ˆ ˆ, , , , kβ β β βL  are the estimators of the parameters 1 2 3, , , , kβ β β βL . 

We call residual to the difference between  and . That is 

 1 2 2 3 3
ˆ ˆ ˆ ˆˆ ˆi i i i i i k kiu y y y x x xβ β β β= − = − − − − −L  (3-15) 

In other words, the residual ˆiu  is the difference between a sample value and its 
corresponding fitted value. 

The system of equations (2-5) can be expressed in a compact form by using matrix 
notation. Thus, we are going to denote 
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For all observations of the sample, the corresponding fitted model will be the 
following:  

 ˆŷ = Xβ  (3-16) 

The residual vector is equal to the difference between the vector of observed 
values and the vector of fitted values, that is to say,  

 ˆˆ ˆ=u y - y = y - Xβ  (3-17) 

3.2 Obtaining the OLS estimates, interpretation of the coefficients, and other 
characteristics  

3.2.1 Obtaining the OLS estimates  
Denoting S to the sum of the squared residuals,  

 
22

1 2 2 3 3
1 1

ˆ ˆ ˆ ˆˆ
n n

i i i i k ki
i i

S u y x x xβ β β β
= =

 = = − − − − − ∑ ∑ L  (3-18) 

to apply the least squares criterion in the model of multiple linear regression, we calculate 
the first derivative from S with respect to each ˆ

jβ  in the expression (3-18): 

iy ˆiy
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 (3-19) 

The least square estimators are obtained equaling to 0 the previous derivatives: 
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or, in matrix notation, 

 ˆ′ ′=X X X y  β  (3-21) 

The previous equations are denominated generically hyperplane normal equations.  
In expanded matrix notation, the system of normal equations is the following: 
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 (3-22) 

Note that:  

a) / n′X X  is the matrix of second order sample moments with respect to the origin, of 
the regressors, among which a dummy regressor (x1i) associated to the intercept is 
included. This regressor takes the value x1i=1 for all i. 
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b)  / n′X y  is the vector of sample moments of second order, with respect to the origin, 
between the regressand and the regressors.  

In this system there are k equations and k unknown 1 2 3
ˆ ˆ ˆ ˆ( , , , , )kβ β β βL . This 

system can easily be solved using matrix algebra. In order to solve univocally the system  
(3-21)with respect to β̂ , it must be held that the rank of the matrix ′X X  is equal to k. If 

this is held, both members of (3-21) can be premultiplied by [ ] 1−′X X : 

[ ] [ ]1 1ˆ− −′ ′ ′ ′=X X X X X X X y  β  

with which the expression of the vector of least square estimators, or more precisely, the 
vector of ordinary least square estimators (OLS), is obtained because [ ] 1−′ ′ =X X X X I . 
Therefore, the solution is the following: 
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 (3-23) 

Since the matrix of second derivatives, 2 ′X X , is a positive definite 
matrix, the conclusion is that S presents a minimum in β̂ . 

3.2.2 Interpretation of the coefficients 

A ˆ
jβ  coefficient measures the partial effect of the regressor xj on y holding the 

other regressors fixed. We will see next the meaning of this expression. 
The fitted model for observation i is given by 

 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆˆi i i j ji k kiy x x x xβ β β β β= + + + + + +L L  (3-24) 

Now, let us consider the fitted model for observation h in which the values of the 
regressors and, consequently, y will have changed with respect to (3-24): 

 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆˆh h h j jh k khy x x x xβ β β β β= + + + + + +L L  (3-25) 

Subtracting (3-25) from (3-24), we have 

 2 2 3 3
ˆ ˆ ˆ ˆˆ j j k ky x x x xβ β β β∆ = ∆ + ∆ + + ∆ + + ∆L L  (3-26) 

where 2 2 2 3 3 3ˆ ˆ ˆ , , ,i h i h i h k ki khy y y x x x x x x x x x∆ = − ∆ = − ∆ = − ∆ = −L . 

The previous expression captures the variation of ŷ  due to the changes in all 
regressors. If only xj changes, we will have  

 ˆˆ j jy xβ∆ = ∆  (3-27) 

If xk increases in one unit, we will have 
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 ˆˆ      for  1j jy xβ∆ = ∆ =  (3-28) 

Consequently, the coefficient ˆ
jβ  measures the change in y when xj increases in 1 

unit, holding the regressors 2 3 1 1, , , , , ,j j kx x x x x− +L L  fixed. It is very important to take 
into account this ceteris paribus clause when interpreting the coefficient.  

This interpretation is not valid, of course, for the intercept. 
EXAMPLE 3.1 Quantifying the influence of age and wage on absenteeism in the firm Buenosaires 

Buenosaires is a firm devoted to manufacturing fans, having had relatively acceptable results in 
recent years. The managers consider that these would have been better if the absenteeism in the company 
were not so high. For this purpose, the following model is proposed: 

1 2 3 4absent age tenure wage uβ β β β= + + + +  

where absent is measured in days per year; wage in thousands of euros per year; tenure in years in the firm 
and age is expressed in years. 

Using a sample of size 48 (file absent), the following equation has been estimated: 
·

(1.603) (0.048) (0.067) (0.007)
14.413 0.096 0.078 0.036absent   age  tenure  wage = - - -  

R2=0.694       n =48 

The interpretation of 2β̂  is the following: holding fixed tenure and wage, if age increases by one 

year, worker absenteeism will be reduced by 0.096 days per year. The interpretation of 3β̂  is as follows: 
holding fixed the age and wage, if the tenure increases by one year, worker absenteeism will be reduced by 
0.078 days per year. Finally, the interpretation of 4β̂  is the following: holding fixed the age and tenure, if 
the wage increases by 1000 euros per year, worker absenteeism will be reduced by 0.036 days per year. 

EXAMPLE 3.2 Demand for hotel services  
The following model is formulated to explain the demand for hotel services:   

 ( ) 1 2 3ln ln( )hostel inc hhsize u= b b b+ + +  (3-29) 
where hostel is spending on hotel services, inc is disposable income, both of which are expressed in euros 
per month. The variable hhsize is the number of household members.  

The estimated equation with a sample of 40 households, using file hostel, is the following: 
·ln( ) 27.36 4.442ln( ) 0.523i i ihostel inc hhsize= - + -

 
R2=0.738     n=40

 

As the results show, hotel services are a luxury good. Thus, the demand/income elasticity for this 
good is very high (4.44), which is typical of luxury goods. This means that if income increases by 1%, 
spending on hotel services increases by 4.44%, holding fixed the size of the household. On the other hand, 
if the household size increases by one member, then spending on hotel services will decrease by 52%. 

EXAMPLE 3.3 A hedonic regression for cars 
The hedonic model of price measurement is based on the assumption that the value of a good is 

derived from the value of its characteristics. Thus, the price of a car will therefore depend on the value the 
buyer places on both qualitative (e.g. automatic gear, power, diesel, assisted steering, air conditioning), and 
quantitative attributes (e.g. fuel consumption, weight, performance displacement, etc.). The data set for this 
exercise is file hedcarsp (hedonic car price for Spain) and covers years 2004 and 2005. A first model based 
only on quantitative attributes is the following:  

1 2 3ln( )price volume fueleff uβ β β= + + +  

where volume is length×width×height in m3 and fueleff is the liters per 100 km/horsepower ratio expressed 
as a percentage. 

The estimated equation with a sample of 214 observations is the following: 
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·ln( ) 4.97 0.0956 0.1608i i iprice volume fueleff= 1 + -
 

R2=0.765    n=214
 

The interpretation of 2β̂  and 3β̂  is the following. Holding fixed fueleff, if volume increases by 1 
m3, the price of a car will rise by 9.56%. Holding fixed volume, if the ratio liters per 100 km/horsepower 
increases by 1 percentage point, the price of a car price will fall by 16.08%. 

EXAMPLE 3.4 Sales and advertising: the case of Lydia E. Pinkham  

A model with time series data is estimated in order to measure the effect of advertising expenses, 
realized over different time periods, on current sales. Denoting by Vt and Pt sales and advertising 
expenditures, made at time t, the model proposed initially to explain sales, as a function of current and past 
advertising expenses is as follows: 

 1 2 1 3 2t t t t tV P P P uα β β β− −= + + + + +  (3-30) 

In the above expression the dots indicate that past expenditure on advertising continues to have an 
indefinite influence, although it is assumed that with a decreasing impact on sales. The above model is not 
operational given that it has an indefinite number of coefficients. Two approaches can be adopted in order 
to solve the problem. The first approach is to fix a priori the maximum number of periods during which 
advertising effects on sales are maintained. In the second approach, the coefficients behave according to 
some law which determines their value based on a small number of parameters, also allowing further 
simplification. 

In the first approach the problem that arises is that, in general, there are no precise criteria or 
sufficient information to fix a priori the maximum number of periods. For this reason, we shall look at a 
special case of the second approach that is interesting due to the plausibility of the assumption and easy 
application. Specifically, we will consider the case in which the coefficients βi decrease geometrically as 
we move backward in time according to the following scheme: 

 1            0 1i
i iβ β λ λ= ∀ < <  (3-31) 

The above transformation is called Koyck transformation, as it was this author who in 1954 
introduced scheme (3-31) for the study of investment 

Substituting (3-31) in (3-30), we obtain 

 2
1 1 1 1 2t t t t tV P P P uα β β λ β λ− −= + + + + +  (3-32) 

The above model still has infinite terms, but only three parameters and can also be simplified. 
Indeed, if we express equation (3-32) for period t-1 and multiply both sides by λ we obtain 

 2 3
1 1 1 1 2 1 3 1t t t t tV P P P uλ αλ β λ β λ β λ λ− − − − −= + + + + +  (3-33) 

Subtracting (3-33) from (3-32), and taking into account factors λi tend to 0 as i tends to infinity, 
the result is the following: 

 1 1 1(1 )t t t t tV P V u uα λ β λ λ− −= − + + + −  (3-34) 

The model has been simplified so that it only has three regressors, although, in contrast, it has 
moved to a compound disturbance term. Before seeing the application of this model, we will analyze the 
significance of the coefficient λ and the duration of the effects of advertising expenditures on sales. The 
parameter λ is the decay rate of the effects of advertising expenditures on current and future sales. The 
cumulative effects that the advertising expenditure of one monetary unit have on sales after m periods are 
given by 

 2 3
1(1 )mβ λ λ λ λ+ + + + +  (3-35) 
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To calculate the cumulative sum of effects, given in (3-35), we note that this expression is the sum 
of the terms of a geometric progression2, which can be expressed as follows: 

 1(1 )
1

mβ λ
λ

−
−

 (3-36) 

When m tends to infinity, then the sum of the cumulative effects is given by 

 1

1
β

λ−
 (3-37) 

An interesting point is to determine how many periods of time are required to obtain the p% (e.g., 
50%) of the total effect. Denoting by h the number of periods required to obtain this percentage, we have 

 
1

1

(1 )
Effect in  periods 1 1

Total effect
1

h

hhp

β λ
λ λ

β
λ

−
−= = = −

−

 (3-38) 

Setting p, h can be calculated according to (3-38). Solving for h in this expression, the following 
is obtained  

 ln(1 )
ln

ph
λ
−

=  (3-39) 

This model was used by Kristian S. Palda in his doctoral thesis published in 1964, entitled The 
Measurement of Cumulative Advertising Effects, to analyze the cumulative effects of advertising 
expenditures in the case of the company Lydia E. Pinkham. This case has been the basis for research on the 
effects of advertising expenditures. We will see below some features of this case: 

1) The Lydia E. Pinkham Medicine Company manufactured a herbal extract diluted in an alcohol 
solution. This product was originally announced as an analgesic and also as a remedy for a wide variety of 
diseases. 

2) In general, in different types of products there is often competition among different brands, as 
in the paradigmatic case of Coca-Cola and Pepsi-Cola. When this occurs, the behavior of the main 
competitors is taken into account when analyzing the effects of advertising expenditure. Lydia E. Pinkham 
had the advantage of having no competitors, acting as a monopolist in practice in its product line. 

3) Another feature of the Lydia E. Pinkham case was that most of the distribution costs were 
allocated to advertising because the company had no commercial agents, with the relationship between 
advertising expenses and sales being very high. 

4) The product was affected by different avatars. Thus, in 1914 the Food and Drug Administration 
(United States agency established controls for food and medicines) accused the firm of misleading 
advertising and so they had to change their advertising messages. Also, the Internal Revenue (IRS) 
threatened to apply a tax on alcohol since the alcohol content of the product was 18%. For all these reasons 
there were changes in the presentation and content during the period 1915-1925. In 1925 the Food and Drug 
Administration banned the product from being announced as medicine, having to be distributed as a tonic 
drink. In the period 1926-1940 spending on advertising was significantly increased and shortly after the 
sales of the product declined. 

The estimation of the model (3-34) with data from 1907 to 1960, using file pinkham, is the 
following: 

                                                 
2 Denoting by ap, au and r the first term, the last term and the right respectively, the sum of the 

terms of a convergent geometric progression is given by  

1
p ua a

r
−

−
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·
1138.7 0.3288 0.7593t tsales advexp sales -= + +  

R2=0.877     n=53 

The sum of the cumulative effects of advertising expenditures on sales is calculated by the formula 
(3-37): 

1̂ 0.3288 1.3660ˆ 1 0.75931
β

λ
= =

−−
 

According to this result, every additional dollar spent on advertising produces an accumulated total 
sale of 1,366 units. Since it is important not only to determine the overall effect, but also how long the 
effect lasts, we will now answer the following question: how many periods of time are required to reach 
half of the total effects? Applying the formula (3-39) for the case of p = 0.5, the following result is obtained: 

ln(1 0.5)ˆ(0.5) 2.5172
ln(0.7593)

h −
= =  

3.2.3 Algebraic implications of the estimation 
The algebraic implications of the estimation are derived exclusively from the 

application of the OLS method to the model of multiple linear regression:  
1. The sum of the OLS residuals is equal to 0:  

 
1

ˆ 0
n

i
i

u
=

=∑  (3-40) 

From the definition of residual  

 1 2 2
ˆ ˆ ˆˆ ˆ          1, 2, ,i i i i i k kiu y y y x x i nβ β β= − = − − − − =L L  (3-41) 

If we add for the n observations, then  

 1 2 2
1 1 1 1

ˆ ˆ ˆˆ
n n n n

i i i k ki
i i i i

u y n x xβ β β
= = = =

= − − − −∑ ∑ ∑ ∑L  (3-42) 

On the other hand, the first equation of the system of normal equations (3-20) is  

 1 2 2
1 1 1

ˆ ˆ ˆ 0
n n n

i i k ki
i i i

y n x xβ β β
= = =

− − − − =∑ ∑ ∑L  (3-43) 

If we compare (2-21) and (3-43), we conclude that (2-19) holds. 
Note that, if (2-19) holds, it implies that  

 
1 1

ˆ
n n

i
i i

y y
= =

=∑ ∑  (3-44) 

and, dividing (2-19) and (3-44) by n, we obtain 

         ˆ 0u =      ˆy y=  (3-45) 

2. The OLS hyperplane always goes through the point of the sample means
( )2, , , ky x xL .  

By dividing equation (3-43) by n we have:  
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 1 2 2
ˆ ˆ ˆ

k ky x xβ β β= + + +L  (3-46) 

3. The sample cross product between each one of the regressors and the OLS 
residuals is zero  

 
1

ˆ 0                   2,3, ,
n

ji i
i

x u j k
=

=∑ = L  (3-47) 

Using the last k normal equations (3-20) and taking into account that by definition 

1 2 2 3 3
ˆ ˆ ˆ ˆˆí i i i k kiu y x x xβ β β β= − − − − −L , we can see that  

 

2
1

3
1

1

ˆ 0

ˆ 0

          

ˆ 0

n

i i
i
n

i i
i

n

i ki
i

u x

u x

u x

=

=

=

=

=

=

∑

∑

∑

L L
 (3-48) 

4. The sample cross product between the fitted values ( ŷ ) and the OLS residuals 
is zero. 

 
1

ˆ ˆ 0
n

i í
i

y u
=

=∑  (3-49) 

Taking into account (2-19) and (3-48), we obtain 

 1 2 2 1 2 2
1 1 1 1 1

1 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ0 0 0 0

n n n n n

i í i k ki í í i í k ki í
i i i i i

k

y u x x u u x u x uβ β β β β β

β β β
= = = = =

= + + + = + +

= × + × + × =

∑ ∑ ∑ ∑ ∑L L

L
 (3-50) 

3.3 Assumptions and statistical properties of the OLS estimators 
Before studying the statistical properties of the OLS estimators in the multiple 

linear regression model, we need to formulate a set of statistical assumptions. Specifically, 
the set of assumptions that we will formulate are called classical linear model (CLM) 
assumptions. It is important to note that CLM assumptions are simple, and that the OLS 
estimators have, under these assumptions, very good properties. 

3.3.1 Statistical assumptions of the CLM in multiple linear regression) 

a) Assumption on the functional form 
1) The relationship between the regressand, the regressors and the disturbance is linear 

in the parameters: 

 1 2 2 +k ky x x uβ β β= + + +L  (3-51) 

or, alternatively, for all the observations, 
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 y = Xβ + u  (3-52) 

b) Assumptions on the regressors 

2) The values of 2 3, , kx x xL  are fixed in repeated sampling, or the matrix X is fixed 
in repeated sampling: 

This is a strong assumption in the case of the social sciences where, in general, it 
is not possible to experiment. An alternative assumption can be formulated as follows: 

2*) The regressors 2 3, , , kx x xL  are distributed independently of the random 
disturbance. Formulated in another way, X is distributed independently of the vector of 
random disturbances, which implies that (E ′X u) = 0  

As we said in chapter 2, we will adopt assumption 2). 
3) The matrix of regressors, X, does not contain disturbances of measurement 
4) The matrix of regressors, X, has rank k: 

 ( ) kρ =X  (3-53) 

Recall that the matrix of regressors contains k columns, corresponding to the k 
regressors in the model, and n rows, corresponding to the number of observations. This 
assumption has two implications: 

1. The number of observations, n, must be equal to or greater than the number of 
regressors, k. Intuitively, to estimate k parameters, we need at least k observations. 

2. Each regressor must be linearly independent, which implies that an exact linear 
relationship among any subgroup of regressors cannot exist. If an independent variable is 
an exact linear combination of other independent variables, then there is perfect 
multicollinearity, and the model cannot be estimated. 

If an approximate linear relationship exists, then estimations of the parameters can 
be obtained, although the reliability of such estimations would be affected. In this case, 
there is non-perfect multicollinearity.  

c) Assumption on the parameters 

5) The parameters 1 2 3, , , , kβ β β βL  are constant, or β is a constant vector. 

d) Assumptions on the disturbances 
6) The disturbances have zero mean, 

    ( ) 0,       1, 2,3, ,iE u i n= = …   or  ( )        E =u 0  (3-54) 

7) The disturbances have a constant variance (homoskedasticity assumption): 

 2( )      1, 2,ivar u i nσ= =   (3-55) 

8) The disturbances with different subscripts are not correlated with each other 
(no autocorrelation assumption): 

 ( ) 0          i jE u u i j= ≠  (3-56) 
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The formulation of homoskedasticity and no autocorrelation assumptions allows 
us to specify the covariance matrix of the disturbance vector:  

 

[ ][ ] [ ][ ] [ ][ ]

[ ]
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 (3-57) 
In order to get to the last equality, it has been taken into account that the variances 

of each one of the elements of the vector is constant and equal to 2σ  in accordance with 
(3-55) and the covariances between each pair of elements is 0 in accordance with (3-56). 

The previous result can be expressed in synthetic form: 

 2( )E σ′ =uu  I  (3-58) 

The matrix given in (3-58) is denominated scalar matrix, since it is a 
scalar ( 2σ , in this case) multiplied by the identity matrix. 

9) The disturbance u is normally distributed 

Taking into account assumptions 6 to 9, we have  

 2~ (0 )   1, 2, ,iu NID i nσ =,         or        2~ ( )N σu 0, I  (3-59) 

where NID stands for normally independently distributed. 

3.3.2 Statistical properties of the OLS estimator 
Under the above assumptions of the CLM, the OLS estimators possess good 

properties. In the proofs of this section, assumptions 3, 4 and 5 will implicitly be used. 

Linearity and unbiasedness of the OLS estimator  
Now, we are going to prove that the OLS estimator is linearly unbiased. First, we 

express β̂  as a function of the vector u, using assumption 1, according to (3-52): 

 [ ] [ ] [ ] [ ]ˆ -1 -1 -1β = X X X y = X X X Xβ + u = β + X X X u′ ′ ′ ′ ′ ′  (3-60) 

The OLS estimator can be expressed in this way so that the property of linearity is 
clearer: 

 [ ]ˆ -1β = β + X X X u = β + Au′ ′  (3-61) 
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where [ ]-1A = X X X′ ′  is fixed under assumption 2. Thus β̂  is a linear 
function of u and, consequently, it is a linear estimator. 

Taking expectations in (3-60) and using assumption 6, we obtain 

 [ ] [ ]ˆE E-1β = β + X X X u = β  ′ ′   (3-62) 

Therefore, β̂  is an unbiased estimator. 

Variance of the OLS estimators 

In order to calculate the covariance matrix of β̂ assumptions 7 and 8 are needed, 
in addition to the  first six assumptions: 

 [ ] [ ] [ ] [ ]

[ ] [ ] [ ]2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆvar( ) ( ) ( )

( )

( )

E E E E

E E

E

-1 -1 -1 -1

-1 -1 -1

β = β β β β = β β β β

= X X X uu X X X = X X X uu X X X

= X X X I X X X = X Xσ σ

′ ′       − − − −       
 ′ ′ ′ ′ ′ ′ ′ ′ 

′ ′ ′ ′

(3-63) 

In the third step of the above proof it is taken into account that, according to  (3-60), 

[ ]ˆ -1β β = X X X u′ ′− . Assumption 2 is taken into account in the fourth step. Finally, 
assumptions 7 and 8 are used in the last step.  

Therefore, [ ]2ˆvar( ) -1β X Xσ ′=  is the covariance matrix of the vector β̂ . In this 

covariance matrix, the variance of each element ˆ
jβ  appears on the main diagonal, while 

the covariances between each pair of elements are outside of the main diagonal. 
Specifically, the variance of ˆ

jβ  (for j=2,3,…,k) is equal to σ2 multiplied by the 

corresponding element of the main diagonal of [ ]-1X X′ . After operating, the variance of 
ˆ

jβ  can be expressed as  

 
2

2 2
ˆvar( )

(1 )j
j jnS R
σβ =

−
 (3-64) 

where 2
jR  is the R-squared from regressing xj on all other x’s, n is the sample 

size and 2
jS  is the sample variance of the regressor X. 

Formula (3-64) is valid for all slope coefficients, but not for the intercept 

The square root of (3-64) is called the standard deviation of ˆ
jβ : 

 
2 2

ˆ( )
(1 )

j

j j

sd
nS R

σβ =
−

 (3-65) 



INTRODUCTION TO ECONOMETRICS 

80 
 

OLS estimators are BLUE 
Under assumptions 1 through 8 of the CLM, which are called Gauss-Markov 

assumptions, the OLS estimators is the Best Linear Unbiased Estimators (BLUE).  
The Gauss Markov theorem states that the OLS estimator is the best estimator 

within the class of linear unbiased estimators. In this context, best means that it is an 
estimator with the smallest variance for a given sample size. Let us now compare the 

variance of an element of β̂  ( ˆ
jβ ), with any other estimator that is linear (so 

1

n

j ij i
i

w yβ
=

= ∑%

) and unbiased (so the weights, wj, must satisfy some restrictions). The property of ˆ
jβ  

being a BLUE estimator has the following implications when comparing its variance with 
the variance of jβ%: 

1) The variance of the coefficient jβ% is greater than, or equal to, the variance of 
ˆ  jβ obtained by OLS: 

 ˆvar( ) var( )         j 1, 2,3, ,j j kβ β≥ =% K  (3-66) 

2) The variance of any linear combination of jβ%´s is greater than, or equal to, the 

variance of the corresponding linear combination of ˆ
jβ ’s. 

In appendix 3.1 the proof of the theorem of Gauss-Markov can be seen. 

Estimator of the disturbance variance 
Taking into account the system of normal equations (3-20), if we know n–k of the 

residuals, we can get the other k residuals by using the restrictions imposed by that system 
in the residuals. 

For example, the first normal equation allows us to obtain the value of ˆnu  as a 
function of the remaining residuals: 

1 2 1ˆ ˆ ˆ ˆn nu u u u −= − − − −L  

Thus, there are only n–k degrees of freedom in the OLS residuals, as opposed to 
n degrees of freedom in the disturbances. Remember that the degree of freedom is defined 
as the difference between the number of observations and the number of parameters 
estimated. 

The unbiased estimator of 2σ  is adjusted taken into account the degree of freedom: 

 

2

2 1

ˆ
ˆ

n

i
i

u

n k
σ ==

−

∑
 (3-67) 

Under assumptions 1 to 8, we obtain  

 2 2ˆ( )E σ σ=  (3-68) 

See appendix 3.2 for the proof. 
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The square root of (3-67), σ̂  is called standard error of the regression and is an 
estimator of σ .  

Estimators of the variances of β̂  and the slope coefficient ˆ
jβ  

The estimator of the covariance matrix of β̂  is given by 

 · [ ]

· · · ·

· · · ·

· · · ·

· ·

1 1 2 1 1

2 1 2 2 2

12

1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆvar( ) ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) var( ) ( , ) ( , )

ˆ ˆ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) var( ) ( , )

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ,

j k

j k

j j j j k

k k k

Cov Cov Cov

Cov Cov Cov

Var
Cov Cov Cov

Cov Cov Cov

β β β β β β β

β β β β β β β

σ
β β β β β β β

β β β β β

−′= =X X

L L

L L
L L O L L L

L L
L L L L O L

L

β

· ·ˆ ˆ) var( )j kβ β

 
 
 
 
 
 
 
 
 
 
  L

 (3-69) 

The variance of the slope coefficient ˆ
jβ , given in (3-64), is a function of the 

unknown parameter 2σ . When 2σ  is substituted by its estimator 2σ̂ , an estimator of the 
variance of ˆ

jβ  is obtained:  

 · 2

2 2

ˆˆvar( )
(1 )j

j jnS R
σβ =

−
 (3-70) 

According to the previous expression, the estimator of the variance ˆ
jβ  is affected 

by the following factors: 

a) The greater 2σ̂ , the greater the variance of the estimator. This is not at all 
surprising: more “noise” in the equation - a larger 2σ̂ - makes it more 
difficult to estimate accurately the partial effect of any x’s on y. (See 
figure 3.1).  

b) As sample size increases, the variance of the estimator is reduced.  
c) The smaller the sample variance of a regressor, the greater the variance 

of the corresponding coefficient. Everything else being equal, for 
estimating β j we prefer to have as much sample variation in xj as possible, 
which is illustrated in figure 3.2. As you can see, there are many 
hypothetical lines that could fit the data when the sample variance of xj  

( 2
jS ) is small, which can be seen in part a) of the figure. In any case, 

assumption 4 does not allow 2
jS  being equal to 0.  

d) The higher 2
jR , (i.e., the higher is the correlation of regressor j with the 

rest of the regressors), the greater the variance of ˆ
jβ . 
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   a) 2ŝ  big   b) 2ŝ  small 

FIGURE 3.1. Influence of 2ŝ  on the estimator of the variance. 

 
   a) 2

jS  small   b) 2
jS  big 

FIGURE 3.2. Influence of 2
jS  on the estimator of the variance. 

The square root of (3-70) is called the standard error of ˆ
jβ : 

 
2 2

ˆˆ( )
(1 )

j

j j

se
nS R

σβ =
−

 (3-71) 

Other properties of the OLS estimators 

Under 1 through 6 CLM assumptions, the OLS estimator β̂  is consistent, as can 
be seen in appendix 3.3, asymptotically normally distributed and also asymptotically 
efficient within the class of the consistent and asymptotically normal estimators.  

Under 1 through 9 CLM assumptions, the OLS estimator is also the maximum 
likelihood estimator (ML), as can be seen in appendix 3.4, and the minimum variance 
unbiased estimator (MVUE). This means that the OLS estimator has the smallest variance 
among all unbiased, linear o non linear, estimators.  

3.4 More on functional forms 
In this section we will examine two topics on functional forms: use of natural logs 

in models and polynomial functions.  

3.4.1 Use of logarithms in the econometric models 
Some variables are often used in log form. This is the case of variables in monetary 

terms which are generally positive or variables with high values such as population. Using 
models with log transformations also has advantages, one of which is that coefficients 
have appealing interpretations (elasticity or semi-elasticity). Another advantage is the 
invariance of slopes to scale changes in the variables. Taking logs is also very useful 

xj xj

y y

y y

xj xj
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because it narrows the range of variables, which makes estimates less sensitive to extreme 
observations on the dependent or the independent variables. The CLM assumptions are 
satisfied more often in models using ln(y) as a regressand than in models using y without 
any transformation. Thus, the conditional distribution of y is frequently heteroskedastic, 
while ln(y) can be homoskedastic.  

One limitation of the log transformation is that it cannot be used when the original 
variable takes zero or negative values. On the other hand, variables measured in years and 
variables that are a proportion or a percentage, are often used in level (or original) form. 

3.4.2 Polynomial functions  
The polynomial functions have been extensively used in econometric research. 

When there are only the regressors corresponding to a polynomial function we have a 
polynomial model. The general kth degree polynomial model may be written as 

 2
1 2 3 + +k

ky x x x uβ β β β= + + +  (3-72) 

Quadratic functions 
An interesting case of polynomial functions is the quadratic function, which is a 

second-degree polynomial function. When there are only regressors corresponding to the 
quadratic function, we have a quadratic model: 

 2
1 2 3 +y x x uβ β β= + +  (3-73) 

Quadratic functions are used quite often in applied economics to capture 
decreasing or increasing marginal effects. It is important to remark that, in such a case, 

2β  does not measure the change in y with respect to x because it makes no sense to hold 
x2 fixed while changing x. The marginal effect of x on y, which depends linearly on the 
value of x, is the following: 

 2 32dyme x
dx

β β= = +  (3-74) 

In a particular application this marginal effect would be evaluated at specific 
values of x. If β2 and β3 have opposite signs the turning point will be at 

 2*

32
x β

β
= −  (3-75) 

If β2>0 and β3<0, then the marginal effect of x on y is positive at first, but it will 
be negative for values of x greater than *x . If β2<0 and β3>0, this marginal effect is 
negative at first, but it will be positive for values of x greater than *x .  
Example 3.5 Salary and tenure  

Using the data in ceosal2 to study the type of relation between the salary of the Chief Executive 
Officers (CEOSs) in USA corporations and the number of years in the company as CEO (ceoten), the 
following model was estimated: 

· 2

(0.086) (0.0001) (0.0156) (0.00052)
ln( ) 6.246 0.0006 0.0440 0.0012salary profits ceoten ceoten= + + −  

R2=0.1976     n=177 
where company profits are in millions of dollars and salary is annual compensation in thousands of dollars.  
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The marginal effect ceoten on salary expressed in percentage is the following: 
·

/ % 4.40 2 0.12salary ceotenme ceoten= − ×  

Thus, if a CEO with 10 years in a company spends one more year in that company, their salary 
will increase by 2%. Equating to zero the previous expression and solving for ceoten, we find that the 
maximum effect of tenure as CEO on salary is reached by 18 years. That is, until 18 years the marginal 
effect of CEO tenure on the salary is positive. On the contrary, from 18 years onwards this marginal effect 
is negative.  

Cubic functions 
Another interesting case is the cubic function, or third-degree polynomial 

function. If in the model there are only regressors corresponding to the cubic function, we 
have a cubic model: 

 2 3
1 2 3 4y x x x uβ β β β= + + + +  (3-76) 

Cubic models are used quite often in applied economics to capture decreasing or 
increasing marginal effects, particularly in the cost functions. The marginal effect (me) 
of x on y, which depends on x in a quadratic form, will be the following: 

 2
2 3 42 3dyme x x

dx
β β β= = + +  (3-77) 

The minimum of me will occur where 

 3 42 6 0dme x
dx

β β= + =  (3-78) 

Therefore, 

 3
min

43
me β

β
−

=  (3-79) 

In a cubic model of a cost function, the restriction 2
3 4 23β β β<  must be met to 

guarantee that the minimum marginal cost is positive. Other restrictions that a cost 
function must satisfy are as follows: β1, β2, and β4>0; and β3<0 
Example 3.6 The marginal effect in a cost function 

Using the data on 11 pulp mill firms (file costfunc) to study the cost function, the following model 
was estimated: 

· 2 3

(1.602) (0.2167) (0.0081) (0.000086)
29.16 2.316 0.0914 0.0013cost output output output= + − +  

R2=0.9984     n=11 
where output is the production of pulp in thousands of tons and cost is the total cost in millions of euros 

The marginal cost is the following: 
· 22.316 2 0.0914 3 0.0013marcost output output= − × + ×  

Thus, if a firm with a production of 30 thousand tons of pulp increases the pulp production by one 
thousand tons, the cost will increase by 0.754 million of euros. Calculating the minimum of the above 
expression and solving for output, we find that the minimum marginal cost is equal to a production of 
23.222 thousand tons of pulp. 



MULTIPLE LINEAR REGRESSION 

85 
 

3.5 Goodness-of-fit and selection of regressors. 
Once least squares have been applied, it is very useful to have some measure of 

the goodness of fit between the model and the data. In the event that several alternative 
models have been estimated, measures of the goodness of fit could be used to select the 
most appropriate model.  

In econometric literature there are numerous measures of goodness of fit. The 
most popular is the coefficient of determination, which is designated by R2 or R-squared, 
and the adjusted coefficient of determination, which is designated 2R  or adjusted R-
squared. Given that these measures have some limitations, the Akaike Information 
Criterion (AIC) and Schwarz Criterion (SC) will also be referred to later on. 

3.5.1 Coefficient of determination 
As we saw in chapter 2, the coefficient of determination is based on the following 

breakdown: 

 TSS ESS RSS= +  (3-80) 

where TSS is the total sum of squares, ESS is the explained sum of squares and RSS is the 
residual sum of squares. 

Based on this breakdown, the coefficient of determination is defined as: 

 2 ESSR
TSS

=  (3-81) 

Alternatively, and in an equivalent manner, the coefficient of determination can 
be defined as  

 2 RSSR
TSS

=1−  (3-82) 

The extreme values of the coefficient of determination are: 0, when the explained 
variance is zero, and 1, when the residual variance is zero; that is, when the fit is perfect. 
Therefore, 

 20 1R£ £  (3-83) 

A small R2 implies that the disturbance variance (σ2) is large relative to the 
variance of y, which means that βj is not estimated with precision. But remember that a 
large disturbance variance can be offset by a large sample size. Thus, if n is large enough, 
we may be able to estimate the coefficients with precision even though we have not 
controlled for many unobserved factors. 

To interpret the coefficient of determination properly, the following caveats 
should be taken into account:  

a) As new explanatory variables are added, the coefficient of determination 
increases its value or, at least, keeps the same value. This happens even though the 
variable (or variables) added have no relation to the endogenous variable. Thus, we can 
always verify that 

 2 2
1j jR R -³  (3-84) 
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where the R is squared in a model with j-1 regressors, and  is the R squared in a 
model with an additional regressor. That is to say, if we add variables to a given model, 
R2 will never decrease, even if these variables do not have a significant influence. 

b) If the model has no intercept, the coefficient of determination does not have a 
clear interpretation because the decomposition given (3-80) is not fulfilled. In addition, 
the two forms of calculation mentioned - (3-81) and (3-82) - generally lead to different 
results, which in some cases may fall outside the interval [0, 1].  

c) The coefficient of determination cannot be used to compare models in which 
the functional form of the endogenous variable is different. For example, R2 cannot be 
applied to compare two models in which the regressand is the original variable, y, and 
ln(y) respectively.  

3.5.2 Adjusted R-Squared 
To overcome one of the limitations of the R2, we can “adjust” it in a way that takes 

into account the number of variables included in a given model. To see how the usual R2 
might be adjusted, it is useful to write it as 

 2 /1
/

RSS nR
TSS n

= -  (3-85) 

where, in the second term of the right-hand side, the residual variance is divided by the 
variance of the regressand. 

The R2, as it is defined in (3-85), is a sample measure. Now, if we want a 
population measure, we can define the population R2 as  

 
2

2
21 u

POP
y

R σ
σ

= −  (3-86) 

However, we have better estimates for these variances, 2
uσ  and 2

yσ , than the ones 
used in the (3-85). So, let us use unbiased estimates for these variances 

 2 2/ ( ) 11 1 (1 )
/ ( 1)

SCR n k nR R
SCT n n k

- -= - = - -
- -

 (3-87) 

This measure is called the adjusted R–squared, or 2R .The primary attractiveness 
of  is that it imposes a penalty for adding additional regressors to a model. If a 
regressor is added to the model then RSS decreases, or at least is equal. On the other hand, 
the degrees of freedom of the regression n−k always decrease.  can go up or down 
when a new regressor is added to the model. That is to say: 

 2 2
1j jR R -³     or     2 2

1j jR R -£  (3-88) 

An interesting algebraic fact is that if we add a new regressor to a model,  
increases if, and only if, the t statistic, which we will examine in chapter 4, on the new 
regressor is greater than 1 in absolute value. Thus we see immediately that  could be 
used to decide whether a certain additional regressor must be included in the model. The 

 has an upper bound that is equal to 1, but it does not strictly have a lower bound since 
it can take negative values. 

2
1jR -

2
jR

2R

2R

2R

2R

2R
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The observations b) and c) made to the R squared remain valid for the adjusted R 
squared.  

3.5.3 Akaike information criterion (AIC) and Schwarz criterion (SC) 
These two criteria- Akaike information criterion (AIC) and Schwarz Criterion (SC) 

- have a very similar structure. For this reason, they will be reviewed together. 
The AIC statistic, proposed by Akaike (1974) and based on information theory, 

has the following expression: 

 2 2l kAIC
n n

= - +  (3-89) 

where l is the log likelihood function (assuming normally distributed disturbances) 
evaluated at the estimated values of the coefficients. 

The SC statistic, proposed by Schwarz (1978), has the following expression: 

 2 ln( )l k nSC
n n

= - +  (3-90) 

The AIC and SC statistics, unlike the coefficients of determination (R2 and ), 
are better the lower their values are. It is important to remark that the AIC and SC statistics 
are not bounded unlike R2.  

a) The AIC and SC statistics penalize the introduction of new regressors. In the 
case of the AIC, as can be seen in the second term of the right hand side of (3-89), the 
number of regressors k appears in the numerator. Therefore, the growth of k will increase 
the value of AIC and consequently worsen the goodness of fit, if that is not offset by a 
sufficient growth of the log likelihood. In the case the SC, as can be seen in the second 
term of the right hand side of (3-90), the numerator is kln(n). For n>7, the following 
happens: kln(n)>2k. Therefore, SC imposes a larger penalty for additional regressors than 
AIC when the sample size is greater than seven. 

b) The AIC and SC statistics can be applied to statistical models without intercept.  
c) The AIC and SC statistics are not relative measures as are the coefficients of 

determination. Therefore, their magnitude, in itself, offers no information.  
d) The AIC and SC statistics can be applied to compare models in which 

endogenous variables have different functional forms. In particular, we will compare two 
models in which the regressands are y and ln(y). When the regressand is y, the formula 
(3-89) is applied in the AIC case, or (3-90) in the SC case. When the regressand is ln(y), 
and also when we want to carry out a comparison with another model in which the 
regressand is y, we must correct these statistics in the following way: 

 2ln( )CAIC AIC Y= +  (3-91) 

 2ln( )CSC SC Y= +  (3-92) 

where AICC and SCC are the corrected statistics, and AIC and SC are the statistics supplied 
by any econometric package such as the E-views. 

2R
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Example 3.7 Selection of the best model 
To analyze the determinants of expenditures on dairy the following alternative models have been 

considered: 
1)  1 2dairy inc uβ β= + +  
2)  1 2 ln( )dairy inc uβ β= + +  
3)  1 2 3 5dairy inc punder uβ β β= + + +  
4)  2 3 5dairy inc punder uβ β= + +  
5)  1 2 3dairy inc hhsize uβ β β= + + +  
6)  1 2ln( )dairy inc uβ β= + +  
7)  1 2 3ln( ) 5dairy inc punder uβ β β= + + +  
8)  2 3ln( ) 5dairy inc punder uβ β= + +  

where inc is disposable income of household, hhsize is the number of household members and punder5 is 
the proportion of children under five in the household. 

Using a sample of 40 households (file demand), and taking into account that ln( )dairy =2.3719, 
the goodness of fit statistics obtained for the eight models appear in table 1. In particular, the AIC corrected 
for model 6) has been calculated as follows: 

2ln( ) 0.2794 2 2.3719=5.0232CAIC AIC Y= + = + ´  

Conclusions 
a) The R-squared can be only used to compare the following pairs of models: 1) with 2), and 3) with 

5).  
b) The adjusted R-squared can only be used to compare model 1) with 2), 3) and 5); and 6) with 7. 
c) The best model out of the eight is model 7) according to AIC and SC. 

TABLE 3.1. Measures of goodness of fit for eight models. 
Model number 1 2 3 4 5 6 7 8 

Regressand dairy dairy dairy dairy dairy ln(dairy) ln(dairy) ln(dairy) 

Regressors 
intercept 

inc 

intercept 

ln(inc) 

intercept 
inc 

punder5 

inc 

punder5 

intercept 
Inc 

househsize 

intercept 

inc 

intercept 
inc 

punder5 

inc 

punder5 

R-squared 0.4584 0.4567 0.5599 0.5531 0.4598 0.4978 0.5986 -0.6813 
Adjusted R-squared 0.4441 0.4424 0.5361 0.5413 0.4306 0.4846 0.5769 -0.7255 
Akaike information 

criterion 5.2374 5.2404 5.0798 5.0452 5.2847 0.2794 0.1052 1.4877 

Schwarz criterion 5.3219 5.3249 5.2065 5.1296 5.4113 0.3638 0.2319 1.5721 
Corrected Akaike 

information criterion      5.0232 4.8490 6.2314 

Corrected Schwarz 
criterion      5.1076 4.9756 6.3159 
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Exercises  

Exercise 3.1 Consider the linear regression model y = Xβ + u , where X  is a matrix 
50×5. 
Answer the following questions, justifying your answers: 

a) What are the dimensions of the vectors ,  ,  y β u ? 
b) How many equations are there in the system of normal equations

ˆ′ ′X Xβ = X y ? 
c) What conditions are needed in order to obtain β̂ ? 

Exercise 3.2 Given the model  
yi=β1+β2x2i+β3 x3i+ui 

and the following data:  
y x2 x3 

10 1 0 
25 3 -1 
32 4 0 
43 5 1 
58 7 -1 
62 8 0 
67 10 -1 
71 10 2 

a) Estimate β1, β2 and β3 by OLS.  
b) Calculate the residual sum of squares. 
c) Obtain the residual variance. 
d) Obtain the variance explained by the regression. 
e) Obtain the variance of the endogenous variable 
f) Calculate the coefficient of determination. 
g) Obtain an unbiased estimation of σ2. 
h) Estimate the variance of 2β̂ . 

To answer these questions you can use Excel. See exhibit 3.1 as an example. 
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Exhibit 3.1 
1) Calculation of X’X and X’y 

  
Explanation for X’X 
a) Enter the matrices X’ and X into the Excel: B5:K6 and N2:O11 
b) You can find the product X’X by highlighting the cells where you want to place the resulting matrix. 
c) Once you have highlighted the resulting matrix, and while it is still highlighted, enter the following 
formula:=MMULT(B5:K6; N2:O11) 
d) When the formula is entered, press the Ctrl key and the Shift key simultaneously. Then, holding these two keys, 
press the Enter key too. 

2) Calculation of (X’X)-1 

 
a) Enter the matrix X’X into the Excel: R5:S6 
b) You can find the inverse of matrix X’X by highlighting the cells where you want to place the resulting 

matrix (R5:S6) 
c) Once you have highlighted the resulting matrix, and while it is still highlighted, enter the following 
formula:=MINVERSE(R5:S6). 
d) When the formula is entered, press the Ctrl key and the Shift key simultaneously. Then, holding these two keys, 
press the Enter key too. 

3) Calculation of vector β̂  

 
4) Calculation of ˆ ˆ'u u  and σ2 

  
'ˆ ˆ ˆˆ ˆ ˆ ˆ . . 953 883=70R R= - = - = - = - = -' ' ' ' ' ' ' 'u u y y y y y y β X Xβ y y β X y 5 6  

ˆ ˆ 70ˆ 8.6993
n

s = = =
-

'u u2

2 8
 

5) Calculation of covariance matrix of β̂  
' 3.8696 -0.0370 33.6624 -0.3215ˆ ˆvar( ) 8.6993

-0.0370 0.0004 -0.3215 0.0032
s

- æ ö æ ö÷ ÷é ù ç ç÷ ÷= = =ç ç÷ ÷ê ú ç çë û ÷ ÷ç çè ø è ø
β X X

12
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Exercise 3.3 The following model was formulated to explain the annual sales (sales) of 
the manufacturers of household cleaning products as a function of a relative price index 
(rpi) and the advertising expenditures (adv): 

1 2 3sales rpi adv uβ β β= + + +  
where the variable sales is expressed in a thousand million euros and rpi is a relative price 
index obtained as a ratio between the prices of each firm and the prices of firm 1 of the 
sample; adv is the annual expenditures on advertising and promotional campaigns and 
media diffusion, expressed in millions of euros. 

Data on ten manufacturers of household cleaning products appear in the attached 
table.  

firm sales rpi adv 
1 10 100 300 
2 8 110 400 
3 7 130 600 
4 6 100 100 
5 13 80 300 
6 6 80 100 
7 12 90 600 
8 7 120 200 
9 9 120 400 
10 15 90 700 

Using an excel spreadsheet,  
a) Estimate the parameters of the proposed model  
b) Estimate the covariance matrix. 
c) Calculate the coefficient of determination.  

Note: In exhibit 3.1 the model 1 2sales rpi uβ β= + +  is estimated using excel. 
Instructions are also included. 

Exercise 3.4 A researcher, who is developing an econometric model to explain income, 
formulates the following specification:  
 inc=α+βcons+γsave+u [1] 
where inc is the household disposable income, cons is the total consumption and save is 
the total savings of the household. 

The researcher did not take into account that the above three magnitudes are 
related by the identity  
 inc=cons+save [2] 

The equivalence between the models [1] and [2] requires that, in addition to the 
disappearance of the disturbance term, the model parameters [1] take the following values: 
α =0, β =1, and γ =1 

If you estimate equation [1] with the data for a given country, can you expect, in 
general, that the estimates will take the values ˆˆ ˆ0, 1, 0?= = =α β γ  

Please justify your answer using mathematical notation. 

Exercise 3.5 A researcher proposes the following econometric model to explain tourism 
revenue (turtot) in a given country:  

1 2 3turtot turmean numtur uβ β β= + + +  
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where turmean is the average expenditure per tourist and numtur is the total number of 
tourists. 

a) It is obvious that turtot, numtur and turmean and are also linked by the 
relationship turtot=turmean×numtur. Will this somehow affect the 
estimation of the parameters of the proposed model? 

b) Is there a model with another functional form involving tighter restrictions 
on the parameters? If so, indicate it.  

c) What is your opinion about using the proposed model to explain the 
behavior of tourism revenue? Is it reasonable? 

Exercise 3.6 Let us suppose you have to estimate the model 

1 2 2 3 3 4 4ln( ) ln( ) ln( ) ln( )y x x x uβ β β β= + + + +  
using the following observations:  

x2 x3 x4 
3 12 4 
2 10 5 
4 4 1 
3 9 3 
2 6 3 
5 5 1 

What problems can arise in the estimation of this model? 

Exercise 3.7 Answer the following questions: 
a) Explain the determination coefficient (R2) and the adjusted determination 

coefficient ( R 2 ). What can you use them for? Justify your answer. 
b) Given the models  

 ln(y)=β1+β2ln(x)+u (1) 
 ln(y)=β1+β2ln(x)+β3ln(z)+u (2) 
 ln(y)=β1+β2ln(z)+u (3) 
  y=β1+β2z+u (4) 

indicate what measure of goodness of fit is appropriate to compare the 
following pairs of models: (1) - (2), (1) - (3), and (1) - (4). Explain your 
answer. 

Exercise 3.8 Let us suppose that the following model is estimated by OLS: 

1 2 3ln( ) ln( ) ln( )y x z uβ β β= + + +  
a) Can least square residuals all be positive? Explain your answer. 
b) Under the assumption of no autocorrelation of disturbances, are the OLS 

residuals independent? Explain your answer  
c) Assuming that the disturbances are not normally distributed, will the OLS 

estimators be unbiased? Explain your answer. 

Exercise 3.9 Consider the linear regression model  
y=Xβ+u 

where y and u are vectors 8×1, X is a matrix 8×3 and β is a vector 3×1. Also the following 
information is available: 
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2 0 0
0 3 0
0 0 3

 
 ′ =  
  

X X   ˆ ˆ 22′ =u u  

Answer the following questions, by justifying your answer: 
a) Indicate the sample size, the number of regressors, the number of 

parameters and the degrees of freedom of the residual sum of squares. 
b) Derive the covariance matrix of the vector β̂ , making explicit the 

assumptions used. Estimate the variances of the estimators.  
c) Does the regression have an intercept? What implications does the answer 

to this question have on the meaning of R2 in this model? 

Exercise 3.10 Discuss whether the following statements are true or false: 
a) In a linear regression model, the sum of the residuals is zero. 
b) The coefficient of determination ( 2R ) is always a good measure of the 

model’s quality. 
c) The least squares estimators are biased.  

Exercise 3.11 The following model is formulated to explain time spent sleeping:  

1 2 3 sleep totalwrk leisure uβ β β= + + +  
where sleep, totalwrk (paid and unpaid work) and leisure (time not devoted to sleep or 
work) are measured in minutes per day.  

The estimated equation with a sample of 1000 observations, using file timuse03, 
is the following: 

· 1440 1  _ 1sleep total work leisure= - ´ - ´  
R2=1.000     n=1000 

a) What do you think about these results? 
b) What is the meaning of the estimated intercept? 

Exercise 3.12 Using a subsample of the Structural Survey of Wages (Encuesta de 
estructura salarial) for Spain in 2006 (file wage06sp), the following model is estimated 
to explain wage: 

·ln( ) 1.565 0.0730 0.0177 0.0065wage educ tenure age= + + +  
R2=0.337     n=800 

where educ (education), tenure (experience in the firm) and age are measured in years 
and wage in euros per hour. 

a) What is the interpretation of coefficients on educ, tenure and age? 
b) How many years does the age have to increase in order to have a similar 

effect to an increase of one year in education, holding fixed in each case 
the other two regressors? 

c) Knowing that educ =10.2, tenure =7.2 and age =42.0, calculate the 
elasticities of wage with respect to educ, tenure and age for these values, 
holding fixed the others regressors. Do you consider these elasticities to be 
high or low? 
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Exercise 3.13 The following equation describes the price of housing in terms of house 
bedrooms (number of bedrooms), bathrms (number of full bathrooms) and lotsize (the lot 
size of a property in square feet): 

1 2 3 4price bedrooms bathrms lotsize uβ β β β= + + + +  
where price is the price of a house measured in dollars. 

Using the data for the city of Windsor contained in file housecan, the following 
model is estimated: 

· 2418 5827 19750 5.411price bedrooms bathrms lotsize= − + + +  
R2=0.486     n=546 

a)  What is the estimated increase in price for a house with one more bedroom 
and one more bathroom, holding lotsize constant? 

b) What percentage of the variation in price is explained jointly by the 
number of bedrooms, the number of full bathrooms and the lot size? 

c) Find the predicted selling price for a house of the sample with bedrooms=3, 
bathrms=2 and lotsize=3880. 

d) The actual selling price of the house in c) was $66,000. Find the residual 
for this house. Does the result suggest that the buyer underpaid or overpaid 
for the house? 

Exercise 3.14 To examine the effects of a firm’s performance on a CEO salary, the 
following model was formulated: 

1 2 3 4 5ln( ) ln( )salary roa sales profits tenure uβ β β β β= + + + + +  
where roa is the ratio profits/assets expressed as a percentage and tenure is the number 
of years as CEO (=0 if less than 6 months). Salaries are expressed in thousands of dollars, 
and sales and profits in millions of dollars. 

The file ceoforbes has been used for the estimation. This file contains data on 447 
CEOs of America's 500 largest corporations. (52 of the 500 firms were excluded because 
of missing data on one or more variables. Apple Computer was also excluded since Steve 
Jobs, the acting CEO of Apple in 1999, received no compensation during this period.) 
Company data come from Fortune magazine for 1999; CEO data come from Forbes 
magazine for 1999 too. The results obtained were the following: 
·ln( ) 4.641 0.0054 0.2893ln( ) 0.0000564 0.0122salary roa sales profits tenure= + + + +  

R2=0.232     n=447 
a) Interpret the coefficient on the regressor roa 
b) Interpret the coefficient on the regressor ln(sales). What is your opinion 

about the magnitude of the elasticity salary/sales? 
c) Interpret the coefficient on the regressor profits.  
d) What is the salary/profits elasticity at the sample mean ( salary =2028 and 

profits =700). 

Exercise 3.15 (Continuation of exercise 2.21) Using a dataset consisting of 1,983 firms 
surveyed in 2006 (file rdspain), the following equation was estimated:  

· 1.8168 0.1482ln( ) 0.0110rdintens  sales   exponsal= - + +  
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R2= 0.048     n=1983 
where rdintens is the expenditure on research and development (R&D) as a percentage of 
sales, sales are measured in millions of euros, and exponsal is exports as a percentage of 
sales. 

a) Interpret the coefficient on ln(sales). In particular, if sales increase by 
100%, what is the estimated percentage point change in rdintens? Is this 
an economically large effect?  

b) Interpret the coefficient on exponsal. Is it economically large? 
c) What percentage of the variation in rdintens is explained by sales and 

exponsal? 
d) What is the rdintens/sales elasticity for the sample mean ( rdintens =0.732 

and sales =63544960). Comment on the result. 
e) What is the rdintens/exponsal elasticity for the sample mean ( rdintens

=0.732 and exponsal =17.657). Comment on the result. 

Exercise 3.16 The following hedonic regression for cars (see example 3.3) is formulated:  

1 2 3 4ln( )price cid hpweight fueleff uβ β β β= + + + +  
where cid is the cubic inch displacement, hpweight is the ratio horsepower/weight in kg 
expressed as percentage and fueleff is the ratio liters per 100 km/horsepower expressed as 
a percentage. 

a) What are the probable signs of β2, β3 and β4? Explain them. 
b) Estimate the model using the file hedcarsp and write out the results in 

equation form. 
c) Interpret the coefficient on the regressor cid. 
d) Interpret the coefficient on the regressor hpweight. 
e) To expand the model, add a regressor relative to car size, such as volume 

or weight. What happens if you add both of them? What is the relationship 
between weight and volume? 

Exercise 3.17 The concept of work covers a broad spectrum of possible activities in the 
productive economy. An important part of work is unpaid; it does not pass through the 
market and therefore has no price. The most important unpaid work is housework 
(houswork) carried out mainly by women. In order to analyze the factors that influence 
housework, the following model is formulated: 

1 2 3 4 5houswork educ hhinc age paidwork uβ β β β β= + + + + +  
where educ is the years of education attained, hhinc is the household income in euros per 
month. The variables houswork and paidwork are measured in minutes per day. 

Use the data in the file timuse03 to estimate the model. This file contains 1000 
observations corresponding to a random subsample extracted from the time use survey 
for Spain carried out in 2002-2003.  

a) Which signs do you expect for β2, β3, β4 and β5? Explain. 
b) Write out the results in equation form? 
c) Do you think there are relevant factors omitted in the above equation? 

Explain. 
d) Interpret the coefficient on the regressors educ, hhinc, age and paidwork.  
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Exercise 3.18 (Continuation of exercise 2.20) To explain the overall satisfaction of 
people (stsfglo), the following model is formulated: 

1 2 3stsfglo gnipc lifexpec uβ β β= + + +  
where gnipc is the gross national income per capita expressed in PPP 2008 US dollar 
terms and lifexpec is the life expectancy at birth, i.e., the number of years a newborn infant 
could expect to live. When a magnitude is expressed in PPP (purchasing power parity) 
US dollar terms, a magnitude is converted to international dollars using PPP rates. (An 
international dollar has the same purchasing power as a US dollar in the United States.) 

Use the file HDR2010 for the estimation of the model. 
a) What are the expected signs for β2 and β3? Explain. 
b) What would be the average overall satisfaction for a country with 80 years 

of life expectancy at birth and a gross national income per capita of 30000 
$ expressed in PPP 2008 US dollars? 

c) Interpret the coefficients on gnipc and lifexpe. 
d) Given a country with a life expectancy at birth equal to 50 years, what 

should be the gross national income per capita to obtain a global 
satisfaction equal to five? 

Exercise 3.19 (Continuation exercise 2.24) Due to the problems arisen in the Keynesian 
consumption function, Brown introduced a new regressor in the function: consumption 
lagged a period to reflect the persistence of consumer habits. The formulation of the 
model is as follows 

1 2 3 1t t t tconspc incpc conspc u= b b b -+ + +  
As lagged consumption is included in this model, we have to distinguish between 

marginal propensity to consume in the short term and long term. The short-run marginal 
propensity is calculated in the same way as in the Keynesian consumption function. To 
calculate the long-term marginal propensity it is necessary to consider equilibrium state 
with no changes in variables. Denoting by conspce and incpce consumption and income 
in equilibrium, and regardless of the random disturbance, the previous model in 
equilibrium is given by 

1 2 3
e e econspc incpc conspc= b b b+ +  

The Brown consumption function was estimated with data of the Spanish 
economy for the period 1954-2010 (file consumsp), obtaining the following results: 

·
17.156 0.3965 0.5771t t tconspc incpc conspc −= − + +  

R2=0.997      n=56 
a) Interpret the coefficient on incpc. In the interpretation, do you have to 

include the clause "holding fixed the other regressor”? Justify the answer. 

b) Calculate the short-term elasticity for the sample means ( conspc =8084, 
incpc =8896). 

c) Calculate the long-term elasticity for the sample means. 
d) Discuss the difference between the values obtained for the two types of 

elasticity. 
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Exercise 3.20 To explain the influence of incentives and expenditures in advertising on 
sales, the following alternative models have been formulated:  

 1 2 3sales advert incent uβ β β= + + +  (1) 

 1 2 3ln( ) ln( ) ln( )sales advert incent uβ β β= + + +  (2) 

 1 2 3ln( )sales advert incent uβ β β= + + +  (3) 

 2 3sales advert incent uβ β= + +  (4) 

 1 2ln( ) ln( )sales incent uβ β= + +  (5) 

 1 2sales incent uβ β= + +  (6) 
a) Using a sample of 18 sale areas (file advincen), estimate the above models: 
b) In each of the following groups select the best model, indicating the criteria 

you have used. Justify your answer. 
b1) (1) and (6) 
b2)  (2) and (3) 
b3)  (1) and (4) 
b4)  (2), (3) and (5) 
b5)  (1), (4) and (6) 
b6)  (1), (2), (3), (4), (5) and (6) 

Appendixes 

Appendix 3.1 Proof of the theorem of Gauss-Markov 
To prove this theorem, the MLC assumptions 1 through 9 are used.  

Let us now consider another estimator β  which is a function of y (remember that 
ˆ β  is also a function of y), given by  

 [ ] 1− ′ ′= + β X X X A y  (3-93) 

where A is k n×  arbitrary matrix, that is a function of X and/or other non-stochastic 
variables, but it is not a function of y. For β  to be unbiased, certain conditions must be 
accomplished. 

Taking (3-52) into account, we have 

 [ ] [ ] [ ]1 1− −   ′ ′ ′ ′= + = +   β  X X X A X + u  AX  X X X A u β β + β +  (3-94) 

Taking expectations on both sides of (3-94), we have 

 [ ] 1( ) ( )E Eβ AX  X X X A u AX− ′ ′= + = β + β + β + β  (3-95) 

For β  to be unbiased, that is to say, ( )E β = β , the following must be 
accomplished:  

 =AX I  (3-96) 
Consequently, 
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 [ ] 1− ′ ′= + β  X X X A u β +  (3-97) 

Taking into account assumptions 7 and 8, and (3-96), the ( )Var β  is equal to 

 
[ ] [ ]

[ ] [ ] [ ]

1 1

1 1 12

( ) (( ( )Var E E

E

β β β X X X A uu X X X A

X X X uu X X X AA X X AAσ

− −

− − −

    ′ ′ ′ ′ ′ ′= − − = + +    
      ′ ′ ′ ′ ′ ′ ′= + = +      

β) β)  

 (3-98) 
The difference between both variances is the following: 

 [ ] [ ]1 12 2ˆ( ) ( )Var Var σ σ− − ′ ′ ′ ′− = + − = β β X X AA X X AA  (3-99) 

The product of a matrix by its transpose is always a semi-positive definite matrix. 
Therefore, 

 2ˆ( ) ( ) 0Var Var σ ′− = ≥β β AA  (3-100) 

The difference between the variance of an estimator β  - arbitrary but linear and 
unbiased – and the variance of the estimator β̂  is a semi positive definite matrix. 
Consequently, β̂  is a Best Unbiased Linear Estimator; that is to say, it is a BLUE 
estimator. 

Appendix 3.2 Proof: 2σ)  is an unbiased estimator of the variance of the disturbance 

In order to see which is the most appropriate estimator of 2σ , we shall first 
analyze the properties of the sum of squared residuals. This one is precisely the numerator 
of the residual variance. 

Taking into account (3-17) and (3-23), we are going to express the vector of 
residuals as a function of the regressand 

 [ ] [ ]1 1ˆˆ − − ′ ′ ′ ′= = = = u y - Xβ y - X X X X y I - X X X X y My  (3-101) 

where M is an idempotent matrix. 
Alternatively, the vector of residuals can be expressed as a function of the 

disturbance vector: 

 

[ ] [ ] [ ]

[ ] [ ]
[ ] [ ]

1 1

1 1

1 1

ˆ

  

  

  

− −

− −

− −

   ′ ′ ′ ′= = +   

′ ′ ′ ′= + −

   ′ ′ ′ ′= + − = −   
=

u I - X X X X y I - X X X X X u

X - X X X X X u X X X X u

X - X I X X X X u I X X X X u

Mu

β

β β β

β β
 (3-102) 

Taking into account (3-102), the sum of squared residuals (SSR) can be expressed 
in the following form: 

 ˆ ˆu u u M Mu u Mu′ ′ ′ ′= =  (3-103) 
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Now, keeping in mind that we are looking for an unbiased estimator of 2σ , we 
are going to calculate the expectation of the previous expression: 

 
[ ] [ ] [ ] [ ]

[ ] [ ] 2

2 2

ˆ ˆ

           

           ( )

E E trE E tr

E tr tr E tr

tr n k

σ

σ σ

′ ′ ′ ′= = =

′ ′= = =

= = −

u u u Mu u Mu u Mu

Muu M uu M I

M

 (3-104) 

In deriving (3-104), we have used the property of the trace that ( ) ( )tr tr=AB BA . 
Taking into account that property of the trace, the value of trM  is obtained: 

[ ] [ ]1 1

      
   

n n n n

n n k k

tr tr tr tr

tr tr n k

− −
× ×

× ×

 ′ ′ ′ ′= − = − 
= − = −

M I X X X X I X X X X

I I  

According to (3-104), it holds that  

 [ ]2 ˆ ˆE
n k

σ
′

=
−
u u

 (3-105) 

Keeping (3-105) in mind, an unbiased estimator of the variance will be: 

 2 ˆ ˆˆ
n k

σ
′

=
−

u u  (3-106) 

since, according to (3-104),  

 
2

2 2ˆ ˆ ˆ ˆ( ) ( )ˆ( ) E n kE E
n k n k n k

σσ σ
′ ′ − = = = = − − − 

u u u u  (3-107) 

The denominator of (3-106) is the degree of freedom corresponding to the RSS 
that appear in the numerator. This result is justified by the fact that the normal equations 
of the hyperplane impose k restrictions on the residuals. Therefore, the number of degrees 
of freedom of the RSS is equal to the number of observations (n) minus the number of 
restrictions k. 

Appendix 3.3 Consistency of the OLS estimator 

In appendix 2.8 we have proved the consistency of the OLS estimator 2b̂  in the 
simple regression model. Now we are going to prove the consistency of the OLS vector 
β̂ .  

First, the least squares estimator β̂ , given in (3-23). may be written as 

 ˆ
n n

-æ ö æ ö÷ ÷ç ç= + ÷ ÷ç ç÷ ÷ç çè ø è ø
β β X'X X'u

11 1  (3-108) 

Now, we take limits in the last factor of (3-108) and call Q to the result:  

 
n n® ¥

1lim X'X = Q  (3-109) 
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If X is taken to be fixed in repeated samples, according to assumption 2, then 
(3-109) implies that Q=(l/n)X'X. According to assumption 3, and because the inverse is 
a continuous function of the original matrix, Q-1 exists. Therefore, we can write  

ˆplim( ) plim
n

- é ù
ê ú= +
ê úë û

β β Q X'u1 1
 

The last term of (3-108) can be written as 
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j j ji jn i
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n

i n i i i i
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u
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x x x x un n
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u u
un n

u

X'u

x x x x x x

L L
L L

M M O M O M M
L L

MM M O M O M
L L

M
L L

M
=

é ùé ùê úê úê úê úê úê úê úê úê úê ú= ê úê úê úê úê úê úê úê úê úê úê úê úë ûë û
é ù
ê ú
ê ú
ê ú
ê ú
ê ú= = =ê ú
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ê ú
ê ú
ê ú
ê úë û
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1

21 22 2 2 2

1 2

1 2

1

2

1 2
1

1 1 1 1

1 1

1 1

 (3-110) 

where xi is the column vector corresponding to the ith observation 
Now, we are going to calculate the expectation and the variance (3-110), 

 [ ] [ ] [ ]
n n

i i i i i i
i i

E u E u E u E
n n n

x x x X' u 0
= =

é ù= = = =ê úë û å å
1 1

1 1 1
 (3-111) 

 [ ]( ) ' 'i i i i i ivar u E u u E
n n n n n

X'Xx x x X' uu X Qs sé ù é ù= = = =ê ú ê úë û ë û
2 2

2
1 1

 (3-112) 

since [ ]'E uu Is= 2 , according to assumptions 7 and 8. 

Taking limits in (3-112), it then follows that  

 i in n n
s

® ¥ ® ¥
é ù
ê úë û

2

2
lim var lim 0( )x u = Q = Q = 0  (3-113) 

Since the expectation of i ix u is identically zero and its variance converges to zero, 

i ix u
 
converges in mean square to zero. Convergence in mean square implies 

convergence in probability, and so plim( i ix u )=0. Therefore,  
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ˆplim( ) plim( ) plimi i n
- - -é ù

ê ú= + = + = + ´ =
ê úë û

β β Q x u β Q X'u β Q β1 1 11 0

 (3-114) 

Consequently, β̂  is a consistent estimator. 

Appendix 3.4 Maximum likelihood estimator  
The method of maximum likelihood is widely used in econometrics. This method 

proposes that the parameter estimators be those values for which the probability of 
obtaining the observations given is maximum. In the least squares estimation no prior 
assumption was adopted. On the contrary, the estimation by maximum likelihood requires 
that statistical assumptions about the various elements of the model be established 
beforehand. Thus, in the estimation by maximum likelihood we will adopt all the 
assumptions of classic linear model (CLM). 

Therefore, in the estimation by maximum likelihood of β and σ2 in the model 
(3-52), we take as estimators those values that maximize the probability to obtain the 
observations in a given sample. 

Let us look at the procedure for obtaining the maximum likelihood estimators β 
and σ. According to the CLM assumptions: 

 2( , )N su 0 I:  (3-115) 
The expectation and variance of the distribution of y are given by 

 [ ]( ) ( )E E Ey = Xβ + u = Xβ + u = Xβ  (3-116) 

 ( )( ) 2var( ) E Ey = y Xβ y Xβ = uu = Iσ ′  ′− −    
 (3-117) 

Therefore, 

 2( , )N sy Xβ I:  (3-118) 
The probability density of y (or likelihood function), considering X and y fixed 

and β and σ2 variable, will be in accordance with (3-118) equal to 

 
( )

( )( ) ( )( )2 2
/22

1( , ) exp 1 2
2π

nL f y β y - Xβ ' y Xβσ σ
σ

= | = − −

 (3-119) 
The maximum for L is reached in the same point on the ln(L) given that the 

logarithm function is monotonic, and thus, in order to maximize the function, we can 
work with ln(L) instead of L. Therefore, 

 
2

2

ln(2π) ln( ) 1ln( )
2 2 2

n nL (y - Xβ)'(y - Xβ)σ
σ

= − − − −  (3-120) 

To maximize ln(L), we differentiate it with respect to β and σ2:  

 2

ln( ) 1 ( 2 2 )
2

L X'y X'Xβ
β

δ
δ σ

= − − +  (3-121) 
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 2 2 4

ln( ) ( )
2 2

L n y - Xβ)'(y - Xβδ
δσ σ σ

= − +  (3-122) 

Equating (3-121) to zero, we see that the maximum likelihood estimator of β, 
denoted by β , satisfies that 

 ' 'X X X yβ =  (3-123) 
Because we assume that 'X X  is invertible,  

 [ ] 1' 'β X X X y−= =  (3-124) 

Consequently, the maximum likelihood estimator of β, under the assumptions of 
the CLM, coincides with OLS estimator, that is to say, 

 ˆβ = β  (3-125) 
Therefore,  

 ˆ ˆ ˆ ˆ) '(y - Xβ)'(y - Xβ) = (y - Xβ)'(y - Xβ u u=   (3-126) 

Equating (3-122) to zero and by substituting β by β , we obtain:  

 2 4

ˆ ˆ' 0
2 2

n u u
σ σ

− + =
 

 (3-127) 

where we have designated by 2σ  the maximum likelihood estimator of the variance of 
the random disturbances. From (3-127), it follows that  

 2 ˆ ˆ'
n

u uσ =  (3-128) 

As we can see, the maximum likelihood estimator is not equal to the unbiased 
estimator that has been obtained in (3-106). In fact, if we take expectations to (3-128),  

 [ ]2 21 ˆ ˆ' n kE E
n n

σ σ−  = =  u u  (3-129) 

That is to say, the maximum likelihood estimator, 2σ , is a biased estimator, 
although its bias tends to zero as n infinity, since 

 lim 1
n

n k
n→∞

−
=  (3-130) 
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4 HYPOTHESIS TESTING IN THE MULTIPLE 
REGRESSION MODEL 

4.1 Hypothesis testing: an overview 
Before testing hypotheses in the multiple regression model, we are going to offer 

a general overview on hypothesis testing. 
Hypothesis testing allows us to carry out inferences about population parameters 

using data from a sample. In order to test a hypothesis in statistics, we must perform the 
following steps:  

1) Formulate a null hypothesis and an alternative hypothesis on population 
parameters.  

2) Build a statistic to test the hypothesis made.  
3) Define a decision rule to reject or not to reject the null hypothesis.  
Next, we will examine each one of these steps. 

4.1.1 Formulation of the null hypothesis and the alternative hypothesis 
Before establishing how to formulate the null and alternative hypothesis, let us 

make the distinction between simple hypotheses and composite hypotheses. The 
hypotheses that are made through one or more equalities are called simple hypotheses. 
The hypotheses are called composite when they are formulated using the operators 
"inequality", "greater than" and "smaller than".  

It is very important to remark that hypothesis testing is always about population 
parameters. Hypothesis testing implies making a decision, on the basis of sample data, on 
whether to reject that certain restrictions are satisfied by the basic assumed model. The 
restrictions we are going to test are known as the null hypothesis, denoted by H0. Thus, 
null hypothesis is a statement on population parameters.  

Although it is possible to make composite null hypotheses, in the context of the 
regression model the null hypothesis is always a simple hypothesis. That is to say, in order 
to formulate a null hypothesis, which shall be called H0, we will always use the operator 
“equality”. Each equality implies a restriction on the parameters of the model. Let us look 
at a few examples of null hypotheses concerning the regression model: 

 a)    H0 : β1=0  

 b)    H0 : β1+ β2 =0  
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 c)    H0 : β1=β2 =0  

 d)    H0 : β2+β3 =1 

We will also define an alternative hypothesis, denoted by H1, which will be our 
conclusion if the experimental test indicates that H0 is false. 

Although the alternative hypotheses can be simple or composite, in the regression 
model we will always take a composite hypothesis as an alternative hypothesis. This 
hypothesis, which shall be called H1, is formulated using the operator “inequality” in most 
cases. Thus, for example, given the H0: 

 0 : 1jH β =  (4-1) 

we can formulate the following H1 : 

 1 : 1jH β ≠  (4-2) 

which is a “two side alternative” hypothesis.  
The following hypotheses are called “one side alternative” hypotheses 

 1 : 1jH β <  (4-3) 

 1 : 1jH β >  (4-4) 

4.1.2 Test statistic 
A test statistic is a function of a random sample, and is therefore a random variable. 

When we compute the statistic for a given sample, we obtain an outcome of the test 
statistic. In order to perform a statistical test we should know the distribution of the test 
statistic under the null hypothesis. This distribution depends largely on the assumptions 
made in the model. If the specification of the model includes the assumption of normality, 
then the appropriate statistical distribution is the normal distribution or any of the 
distributions associated with it, such as the Chi-square, Student’s t, or Snedecor’s F. 

Table 4.1 shows some distributions, which are appropriate in different situations, 
under the assumption of normality of the disturbances. 

TABLE 4.1. Some distributions used in hypothesis testing. 

1 restriction 1 or more 
restrictions 

Known 2σ  N Chi-square 

Unknown 2σ   Student’s t Snedecor’s F 

The statistic used for the test is built taking into account the H0 and the sample 
data. In practice, as 2σ  is always unknown, we will use the distributions t and F. 

4.1.3 Decision rule 
We are going to look at two approaches for hypothesis testing: the classical 

approach and an alternative one based on p-values. But before seeing how to apply the 
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decision rule, we shall examine the types of mistakes that can be made in testing 
hypothesis. 

Types of errors in hypothesis testing 
In hypothesis testing, we can make two kinds of errors: Type I error and Type II 

error. 

Type I error 

We can reject H0 when it is in fact true. This is called Type I error. Generally, we 
define the significance level (α) of a test as the probability of making a Type I error. 
Symbolically, 

 0 0Pr(  | )Reject H Hα =  (4-5) 

In other words, the significance level is the probability of rejecting H0 given that 
H0 is true. Hypothesis testing rules are constructed making the probability of a Type I 
error fairly small. Common values for α are 0.10, 0.05 and 0.01, although sometimes 
0.001 is also used. 

After we have made the decision of whether or not to reject H0, we have either 
decided correctly or we have made an error. We shall never know with certainty whether 
an error was made. However, we can compute the probability of making either a Type I 
error or a Type II error. 

Type II error 

We can fail to reject H0 when it is actually false. This is called Type II error. 

 0 1Pr( | )No reject H Hβ =  (4-6) 

In words, β is the probability of not rejecting H0 given that H1 is true. 
It is not possible to minimize both types of error simultaneously. In practice, what 

we do is select a low significance level.  

Classical approach: Implementation of the decision rule 
The classical approach implies the following steps:  

a) Choosing α. Classical hypothesis testing requires that we initially specify a 
significance level for the test. When we specify a value for α, we are essentially 
quantifying our tolerance for a Type I error. If α=0.05, then the researcher is willing to 
falsely reject H0 5% of the time. 

b) Obtaining c, the critical value, using statistical tables. The value c is determined 
by α.  

The critical value (c) for a hypothesis test is a threshold to which the value of the 
test statistic in a sample is compared to determine whether or not the null hypothesis is 
rejected.  
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c) Comparing the outcome of the test statistic, s, with c, H0 is either rejected or 
not for a given α. 

The rejection region (RR), delimited by the critical value(s), is a set of values of 
the test statistic for which the null hypothesis is rejected. (See figure 4.1). That is, the 
sample space for the test statistic is partitioned into two regions; one region (the rejection 
region) will lead us to reject the null hypothesis H0, while the other will lead us not to 
reject the null hypothesis. Therefore, if the observed value of the test statistic S is in the 
critical region, we conclude by rejecting H0; if it is not in the rejection region then we 
conclude by not rejecting H0 or failing to reject H0. 

Symbolically, 

 0

0

If                reject        
If                not reject  

s c H
s c H

≥
<

 (4-7) 

If the null hypothesis is rejected with the evidence of the sample, this is a strong 
conclusion. However, the acceptance of the null hypothesis is a weak conclusion because 
we do not know what the probability is of not rejecting the null hypothesis when it should 
be rejected. That is to say, we do not know the probability of making a type II error. 
Therefore, instead of using the expression of accepting the null hypothesis, it is more 
correct to say fail to reject the null hypothesis, or not reject, since what really happens is 
that we do not have enough empirical evidence to reject the null hypothesis.  

In the process of hypothesis testing, the most subjective part is the a priori 
determination of the significance level. What criteria can be used to determine it? In 
general, this is an arbitrary decision, though, as we have said, the 1%, 5% and 10% levels 
for α are the most used in practice. Sometimes the testing is made conditional on several 
significance levels. 

 
FIGURE 4.1. Hypothesis testing: classical approach. 

An alternative approach: p-value 
With the use of computers, hypothesis testing can be contemplated from a more 

rational perspective. Computer programs typically offer, together with the test statistic, a 
probability. This probability, which is called p-value (i.e., probability value), is also 
known as the critical or exact level of significance or the exact probability of making a 
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Type I error. More technically, the p value is defined as the lowest significance level at 
which a null hypothesis can be rejected.  

Once the p-value has been determined, we know that the null hypothesis is 
rejected for any α ≥ p-value, while the null hypothesis is not rejected when α<p-value. 
Therefore, the p-value is an indicator of the level of admissibility of the null hypothesis: 
the higher the p-value, the more confidence we can have in the null hypothesis. The use 
of the p-value turns hypothesis testing around. Thus, instead of fixing a priori the 
significance level, the p-value is calculated to allow us to determine the significance 
levels of those in which the null hypothesis is rejected. 

In the following sections, we will see the use of p value in hypothesis testing put 
into practice. 

4.2 Testing hypotheses using the t test 

4.2.1 Test of a single parameter 

The t test 
Under the CLM assumptions 1 through 9,  

 ˆ ˆ~ , var( )           1, 2,3, ,j j jN j kβ β β  =    (4-8) 

If we typify 

 [ ]
ˆ ˆ

~ 0,1           1, 2,3, ,ˆˆ ( )var( )
j j j j

jj

N j k
sd

β β β β

ββ

− −
= =   (4-9) 

The claim for normality is usually made on the basis of the Central Limit 
Theorem (CLT), but this is restrictive in some cases. That is to say, normality cannot 
always be assumed. In any application, whether normality of u can be assumed is really 
an empirical matter. It is often the case that using a transformation, i.e. taking logs, yields 
a distribution that is closer to normality, which is easy to handle from a mathematical 
point of view. Large samples will allow us to drop normality without affecting the results 
too much.  

Under the CLM assumptions 1 through 9, we obtain a Student’s t distribution 

 
ˆ

ˆ( )
j j

n k
j

t
se

:
b b

b -

-
 (4-10)  

where k is the number of unknown parameters in the population model (k-1 slope 
parameters and the intercept, β1). The expression (4-10) is important because it allows 
us to test a hypothesis on β j. 

If we compare (4-10) with (4-9), we see that the Student’s t distribution derives 
from the fact that the parameter σ  in ˆ( )jsd β  has been replaced by its estimator σ̂ , 
which is a random variable. Thus, the degrees of freedom of t are n-1-k corresponding 
to the degrees of freedom used in the estimation of 2σ̂ . 
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When the degrees of freedom (df) in the t distribution are large, the t distribution 
approaches the standard normal distribution. In figure 4.2, the density function for 
normal and t distributions for different df are represented. As can be seen, the t density 
functions are flatter (platycurtic) and the tails are wider than normal density function, 
but as df increases, t density functions are closer to the normal density. In fact, what 
happens is that the t distribution takes into account that 2σ  is estimated because it is 
unknown. Given this uncertainty, the t distribution extends more than the normal one. 
However, as the df grows the t-distribution is nearer to the normal distribution because 
the uncertainty of not knowing 2σ  decreases. 

Therefore, the following convergence in distribution should be kept in mind: 

 (0,1)n nt N→∞→  (4-11) 

Thus, when the number of degrees of freedom of a Student’s t tends to infinity, 
the t distribution converges towards a distribution N(0.1). In the context of testing a 
hypothesis, if the sample size grows, so will the degrees of freedom. This means that for 
large sizes the normal distribution can be used to test hypothesis with one unique 
restriction, even when you do not know the population variance. As a practical rule, when 
the df are larger than 120, we can take the critical values from the normal distribution. 

 
FIGURE 4.2. Density functions: normal and t for different degrees of freedom. 

Consider the null hypothesis, 

0 : 0jH β =  

Since β j measures the partial effect of xj on y after controlling for all other 
independent variables, 0 : 0jH β =  means that, once x2, x3, …,xj −1, xj+1,…, xk have been 
accounted for, xj has no effect on y. This is called a significance test. The statistic we use 
to test 0 : 0jH β = , against any alternative, is called the t statistic or the t ratio of ˆ

jβ  and 
is expressed as 

ˆ

ˆ
ˆ( )j

j

j

t
seβ

β

β
=  
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In order to test 0 : 0jH β = , it is natural to look at our unbiased estimator of β j, 
ˆ

jβ . In a given sample ˆ
jβ  will never be exactly zero, but a small value will indicate that 

the null hypothesis could be true, whereas a large value will indicate a false null 
hypothesis. The question is: how far is ˆ

jβ  from zero? 

We must recognize that there is a sampling error in our estimate ˆ
jβ , and thus the 

size of ˆ
jβ  must be weighted against its sampling error. This is precisely what we do when 

we use ˆ
j

t
β

, since this statistic measures how many standard errors ˆ
jβ  is away from zero. 

In order to determine a rule for rejecting H0, we need to decide on the relevant alternative 
hypothesis. There are three possibilities: one-tail alternative hypotheses (right and left 
tail), and two-tail alternative hypothesis. 

One-tail alternative hypothesis: right 
First, let us consider the null hypothesis 

0 : 0jH β =  

against the alternative hypothesis 

1 : 0jH β >  

This is a positive significance test. In this case, the decision rule is the following: 

Decision rule 

 
ˆ 0

ˆ 0

If                reject        

If                not reject  
j

j

n k

n k

t t H

t t H

α
β

α
β

−

−

≥

<
 (4-12) 

Therefore, we reject 0 : 0jH β =  in favor of 1 : 0jH β >  at α when ˆ
j

n kt tα
β −≥  as can 

be seen in figure 4.3. It is very clear that to reject H0 against 1 : 0jH β > , we must get a 
positive ˆ

j
t

β
. A negative ˆ

j
t

β
, no matter how large, provides no evidence in favor of

1 : 0jH β > . On the other hand, in order to obtain n ktα
− in the t statistical table, we only 

need the significance level α and the degrees of freedom. 

It is important to remark that as α decreases, n ktα
−  increases. 

To a certain extent, the classical approach is somewhat arbitrary, since we need to 
choose α in advance, and eventually H0 is either rejected or not. 

In figure 4.4, the alternative approach is represented. As can be seen by observing 
the figure, the determination of the p-value is the inverse operation to find the value of 
the statistical tables for a given significance level. Once the p-value has been determined, 
we know that H0 is rejected for any level of significance of α>p-value, while the null 
hypothesis is not rejected when α<p-value.  
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FIGURE 4.3. Rejection region using t: right-tail 

alternative hypothesis. 
 

FIGURE 4.4. p-value using t: right-tail alternative 
hypothesis. 

EXAMPLE 4.1 Is the marginal propensity to consume smaller than the average propensity to consume? 
As seen in example 1.1, testing the 3rd proposition of the Keynesian consumption function in a 

linear model, is equivalent to testing whether the intercept is significative1y greater than 0. That is to say, 
in the model  

1 2cons inc uβ β= + +  

we must test whether 

1 0β >  

With a random sample of 42 observations, the following results have been obtained  
·

(0.350) (0.062)
0.41 0.843i icons inc= +

  

The numbers in parentheses, below the estimates, are standard errors (se) of the estimators. 
The question we pose is the following: is the third proposition of the Keynesian theory admissible? 

Next, we answer this question. 
1) In this case, the null and alternative hypotheses are the following: 

0 1

1 1

: 0
: 0

H
H

β
β

=
>

 

2) The test statistic is: 
0

1 1 1

1 1

ˆ ˆ 0 0.41 1.171ˆ ˆ 0.35( ) ( )
t

se se
β β β

β β
− −

= = = =  

3) Decision rule 
It is useful to use several significance levels. Let us begin with a significance level of 0.10 because 

the value of t is relatively small (smaller than 1.5). In this case, the degrees of freedom are 40 (42 
observations minus 2 estimated parameters). If we look at the t statistical table (row 40 and column 0.10, 
or 0.20, in statistical tables with one tail, or two tails, respectively), we find 0.10

40 1.303t =  

As t<1.303, we do not reject H0 for α=0.10, and therefore we cannot reject for α=0.05 
( 0.05

40 1.684t = ) or α=0.01 ( 0.01
40 2.423t = ), as can been in figure 4.5. In this figure, the rejection region 

corresponds to α=0.10. Therefore, we cannot reject H0 in favor H1. In other words, the sample data are not 
consistent with Keynes’s proposition 3. 

In the alternative approach, as can be seen in figure 4.6, the p-value corresponding to a 
1̂

t
β =1.171 

for a t with 40 df is equal to 0.124. For α<0.124 - for example, 0.10, 0.05 and 0.01-, H0 is not rejected.  

n ktα
−

n kt −

Rejection
Region

RR

Non 
Rejection
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NRR

ˆ
j

t
β

n kt −

Non rejected
for

α<p-value
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for

α>p-value
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FIGURE 4.5. Example 4.1: Rejection region using 

t with a right-tail alternative hypothesis. 

 
FIGURE 4.6. Example 4.1: p-value using t with 

right-tail alternative hypothesis. 

One-tail alternative hypothesis: left 
Consider now the null hypothesis 

0 : 0jH β =  

against the alternative hypothesis 

1 : 0jH β <  

This is a negative significance test. 
In this case, the decision rule is the following: 

Decision rule 

 
ˆ 0

ˆ 0

If                reject        

If                not reject  
j

j

n k

n k

t t H

t t H

α
β

α
β

−

−

≤ −

> −
 (4-13) 

Therefore, we reject 0 : 0jH β =  in favor of 1 : 0jH β <  at a given α when 

ˆ
j

nt tα
β

≤ − , as can be seen in figure 4.7. It is very clear that to reject H0 against 1 : 0jH β < , 

we must get a negative ˆ
j

t
β

. A positive ˆ
j

t
β

, no matter how large it is, provides no evidence 

in favor of 1 : 0jH β < .  

In figure 4.8 the alternative approach is represented. Once the p-value has been 
determined, we know that H0 is rejected for any level of significance of α>p-value, while 
the null hypothesis is not rejected when α<p-value. 
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FIGURE 4.7. Rejection region using t: left-tail 

alternative hypothesis. 

 
FIGURE 4.8. p-value using t: left-tail alternative 

hypothesis. 

EXAMPLE 4.2 Has income a negative influence on infant mortality? 
The following model has been used to explain the deaths of children under 5 years per 1000 live 

births (deathun5).  

1 2 35deathun gnipc ilitrate uβ β β= + + +  

where gnipc is the gross national income per capita and ilitrate is the adult (% 15 and older) illiteracy rate 
in percentage.  

With a sample of 130 countries (workfile hdr2010), the following estimation has been obtained: 
·

(5.93) (0.00028) (0.183)
5 27.91 0.000826 2.043i i i deathun     gnipc   ilitrate= - +  

The numbers in parentheses, below the estimates, are standard errors (se) of the estimators. 
One of the questions posed by researchers is whether income has a negative influence on infant 

mortality. To answer this question, the following hypothesis testing is carried out: 
The null and alternative hypotheses, and the test statistic, are the following: 

0 2

1 2

: 0
: 0

H
H

β
β

=
<

  2

2

ˆ 0.000826 2.966ˆ 0.00028( )
t

se
β
β

−
= = = −    

Since the t value is relatively high, let us start testing with a level of 1%. For α=0.01, 
0.01 0.01
130 1 2 60 2.390t t− − ≈ = . Given that t<-2.390, as is shown in figure 4.9, we reject H0 in favour of H1. 

Therefore, the gross national income per capita has an influence that is significantly negative in mortality 
of children under 5.That is to say, the higher the gross national income per capita the lower the percentage 
of mortality of children under 5. As H0 has been rejected for α=0.01, it will also be rejected for levels of 
5% and 10%. 

In the alternative approach, as can be seen in figure 4.10, the p-value corresponding to a 
1̂

t
β =-

2.966 for a t with 61 df is equal to 0.0000. For all α>0.0000, such as 0.01, 0.05 and 0.10, H0 is rejected.  

 
FIGURE 4.9. Example 4.2: Rejection region using 

t with a left-tail alternative hypothesis. 

 
FIGURE 4.10. Example 4.2: p-value using t with a 

left-tail alternative hypothesis. 

Two-tail alternative hypothesis 
Consider now the null hypothesis 
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0 : 0jH β =  

against the alternative hypothesis 

1 : 0jH β ≠  

This is the relevant alternative when the sign of β j is not well determined by theory 
or common sense. When the alternative is two-sided, we are interested in the absolute 
value of the t statistic. This is a significance test. 

In this case, the decision rule is the following: 

Decision rule 

 

/2
ˆ 0

/2
ˆ 0

If              reject        

If              not reject  

j

j

n k

n k

t t H

t t H

α
β

α
β

−

−

≥

<
 (4-14) 

Therefore, we reject 0 : 0jH β =  in favor of 1 : 0jH β <  at α when /2
ˆ  

j
n kt tα

β −≥ , as 

can be seen in figure 4.11. In this case, in order to reject H0 against 1 : 0jH β ≠ , we must 
obtain a large enough ˆ

j
t

β
which is either positive or negative.  

It is important to remark that as α decreases, /2
n ktα

−  increases in absolute value. 

In the alternative approach, once the p-value has been determined, we know that while 
H0 is rejected for any level of significance of α>p-value, the null hypothesis is not 
rejected when α<p-value. In this case, the p-value is distributed between both tails in a 
symmetrical way, as is shown in figure 4.12.  

 
FIGURE 4.11. Rejection region using t: two-tail 

alternative hypothesis. 
 

FIGURE 4.12. p-value using t: two-tail alternative 
hypothesis. 

When a specific alternative hypothesis is not stated, it is usually considered to be 
two-sided hypothesis testing. If H0 is rejected in favor of H1 at a given α, we usually say 
that “xj is statistically significant at the level α”. 
EXAMPLE 4.3 Has the rate of crime play a role in the price of houses in an area? 

To explain housing prices in an American town, the following model is estimated: 

1 2 3 4price rooms lowstat crime uβ β β β= + + + +  

where rooms is the number of rooms of the house, lowstat is the percentage of people of “lower status” in 
the area and crime is crimes committed per capita in the area. 
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The output for the fitted model, using the file hprice2 (first 55 observations), appears in table 4.2 
and has been taken from E-views. The meaning of the first three columns is clear: “t-Statistic” is the 
outcome to perform a significance test, that is to say, it is the ratio between the “Coefficient” and the “Std 
error”; and “Prob” is the p-value to perform a two-tailed test. 

In relation to this model, the researcher questions whether the rate of crime in an area plays a role 
in the price of houses in that area. 

To answer this question, the following procedure has been carried out.  
In this case, the null and alternative hypothesis and the test statistic are the following: 

0 4

1 4

: 0
: 0

H
H

β
β

=
≠

  4

4

ˆ 3854 4.016ˆ 960( )
t

se
β
β

−
= = = −  

TABLE 4.2. Standard output in the regression explaining house price. n=55. 
Variable Coefficient Std. Error t-Statistic Prob. 

C -15693.61 8021.989 -1.956324 0.0559 
ROOMS 6788.401 1210.720 5.606910 0.0000 
LOWSTAT -268.1636 80.70678 -3.322690 0.0017 
CRIME -3853.564 959.5618 -4.015962 0.0002 

Since the t value is relatively high, let us by start testing with a level of 1%. For α=0.01, 
0.01/2 0.01/2
51 50 2.69t t≈ = . (In the usual statistical tables for t distribution, there is no information for each df 

above 20). Given that t > 2.69, we reject H0 in favour of H1. Therefore, crime has a significant influence 
on housing prices for a significance level of 1% and, thus, of 5% and 10%. 

In the alternative approach, we can perform the test with more precision. In table 4.2 we see that 
the p-value for the coefficient of crime is 0.0002. That means that the probability of the t statistic being 
greater than 4.016 is 0.0001 and the probability of t being smaller than -4.016 is 0.0001. That is to say, the 
p-value, as shown in Figure 4.13, is distributed in the two tails. As can be seen in this figure, H0 is rejected 
for all significance levels greater than 0.0002, such as 0.01, 0.05 and 0.10.  

 
FIGURE 4.13. Example 4.3: p-value using t with a two-tail alternative hypothesis. 

So far we have seen significant tests of one-tail and two-tails, in which a parameter 
takes the value 0 in H0. Now we are going to look at a more general case where the 
parameter in H0 takes any value:  

0
0 : j jH β β=  

Thus, the appropriate t statistic is 
0

ˆ

ˆ
ˆ( )j

j j

j

t
seβ

β β

β

−
=  
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As before, ˆ
j

t
β

 measures how many estimated standard deviations ˆ
jβ  is away 

from the hypothesized value of 0
jβ . 

EXAMPLE 4.4 Is the elasticity expenditure in fruit/income equal to 1? Is fruit a luxury good? 
To answer these questions, we are going to use the following model for the expenditure in fruit: 

1 2 3 4ln( ) ln( )fruit inc househsize punders uβ β β β= + + + +  

where inc is disposable income of household, househsize is the number of household members and punder5 
is the proportion of children under five in the household. 

As the variables fruit and inc appear expressed in natural logarithms, then β2 is the expenditure in 
fruit/income elasticity. Using a sample of 40 households (workfile demand), the results of table 4.3 have 
been obtained. 

TABLE 4.3. Standard output in a regression explaining expenditure in fruit. n=40. 
Variable Coefficient Std. Error t-Statistic Prob. 

C -9.767654 3.701469 -2.638859 0.0122 
LN(INC) 2.004539 0.512370 3.912286 0.0004 
HOUSEHSIZE -1.205348 0.178646 -6.747147 0.0000 
PUNDER5 -0.017946 0.013022 -1.378128 0.1767 

 
Is the expenditure in fruit/income elasticity equal to 1? 

To answer this question, the following procedure has been carried out:  
In this case, the null and alternative hypothesis and the test statistic are the following: 

0 2

1 2

: 1
: 1

H
H

β
β

=
≠

  
0

2 2 2

2 2

ˆ ˆ 1 2.005 1 1.961ˆ ˆ 0.512( ) ( )
t

se se
β β β

β β
− − −

= = = =  

For α=0.10, we find that 0.10/2 0.10/2
36 35 1.69t t≈ = . As t| | >1.69, we reject H0. For α=0.05, 

0.05/2 0.05/2
36 35 2.03t t≈ = . As t| | <2.03, we do not reject H0 for α=0.05, nor for α=0.01. Therefore, we reject 

that the expenditure on fruit/income elasticity is equal to 1 for α=0.10, but we cannot reject it for α=0.05, 
nor for α=0.01.  
Is fruit a luxury good? 

According to economic theory, a commodity is a luxury good when its expenditure elasticity with 
respect to income is higher than 1. Therefore, to answer to the second question, and taking into account that 
the t statistic is the same, the following procedure has been carried out:  

0 2: 1H β =              1 2: 1H β > . 

For α=0.10, we find that 0.10 0.10
36 35 1.31t t≈ = . As t>1.31, we reject H0 in favour of H1. For α=0.05, 

0.05 0.05
36 35 1.69t t≈ = . As t>1.69, we reject H0 in favour of H1. For α=0.01, 0.01 0.01

36 35 2.44t t≈ = . As t<2.44, we 
do not reject H0. Therefore, fruit is a luxury good for α=0.10 and α=0.05, but we cannot reject H0 in favour 
of H1 for α=0.01.  

EXAMPLE 4.5 Is the Madrid stock exchange market efficient? 
Before answering this question, we will examine some previous concepts. The rate of return of an 

asset over a period of time is defined as the percentage change in the value invested in the asset during that 
period of time. Let us now consider a specific asset: a share of an industrial company acquired in a Spanish 
stock market at the end of one year and remains until the end of next year. Those two moments of time will 
be denoted by t-1 and t respectively. The rate of return of this action within that year can be expressed by 
the following relationship: 

 
1

t t t
t

t

P D ARA
P

  
=  (4-15) 
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where Pt: is the share price at the end of period t, Dt: are the dividends received by the share during the 
period t, and At: is the value of the rights that eventually corresponded to the share during the period t 

Thus, the numerator of (4-15) summarizes the three types of capital gains that have been received 
for the maintenance of a share in year t; that is to say, an increase or decrease in quotation, dividends and 
rights on capital increase. Dividing by Pt-1, we obtain the rate of profit on share value at the end of the 
previous period. Of these three components, the most important one is the increase in quotation. 
Considering only that component, the yield rate of the action can be expressed by 

 
1

1 t
t

t

PRA
P


=  (4-16) 

or, alternatively if we use a relative rate of variation, by 

 2 lnt tRA P=  (4-17) 

In the same way as Rat represents the rate of return of a particular share in either of the two 
expressions, we can also calculate the rate of return of all shares listed in the stock exchange. The latter rate 
of return, which will be denoted by RMt, is called the market rate of return. 

So far we have considered the rate of return in a year, but we can also apply expressions such as 
(4-16), or (4-17), to obtain daily rates of return. It is interesting to know whether the rates of return in the 
past are useful for predicting rates of return in the future. This question is related to the concept of market 
efficiency. A market is efficient if prices incorporate all available information, so there is no possibility of 
making abnormal profits by using this information. 

In order to test the efficiency of a market, we define the following model, using daily rates of 
return defined by (4-16): 

 1 2 192  92t t trmad rmad uβ β −= + +  (4-18) 

If a market is efficient, then the parameter β2 of the previous model must be 0. Let us now compare 
whether the Madrid Stock Exchange is efficient as a whole. 

The model (4-18) has been estimated with daily data from the Madrid Stock Exchange for 1992, 
using file bolmadef. The results obtained are the following: 

 ·
1(0.0007) (0.0629)

92 0.0004 0.1267 92t trmad rmad= − -+  

R2=0.0163     n=247 
The results are paradoxical. On the one hand, the coefficient of determination is very low (0.0163), 

which means that only 1.63% of the total variance of the rate of return is explained by the previous day’s 
rate of return. On the other hand, the coefficient corresponding to the rate of significance of the previous 
day is statistically significant at a level of 5% but not at a level of 1% given that the t statistic is equal to 
0.1267/0.0629=2.02, which is slightly larger in absolute value than 0.01 0.01

245 60t t =2.00. The reason for this 
apparent paradox is that the sample size is very high. Thus, although the impact of the explanatory variable 
on the endogenous variable is relatively small (as indicated by the coefficient of determination), this finding 
is significant (as evidenced by the statistical t) because the sample is sufficiently large. 

To answer the question as to whether the Madrid Stock Exchange is an efficient market, we can 
say that it is not entirely efficient. However, this response should be qualified. In financial economics there 
is a dependency relationship of the rate of return of one day with respect to the rate corresponding to the 
previous day. This relationship is not very strong, although it is statistically significant in many world stock 
markets due to market frictions. In any case, market players cannot exploit this phenomenon, and thus the 
market is not inefficient, according to the above definition of the concept of efficiency. 

EXAMPLE 4.6 Is the rate of return of the Madrid Stock Exchange affected by the rate of return of the 
Tokyo Stock Exchange? 

The study of the relationship between different stock markets (NYSE, Tokyo Stock Exchange 
Madrid Stock Exchange, London Stock Exchange, etc.) has received much attention in recent years due to 
the greater freedom in the movement of capital and the use of foreign markets to reduce the risk in portfolio 
management. This is because the absence of perfect market integration allows diversification of risk. In any 
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case, there is a world trend toward a greater global integration of financial markets in general and stock 
markets in particular.  

If markets are efficient, and we have seen in example 4.5 that they are, the innovations (new 
information) will be reflected in the different markets for a period of 24 hours. 

It is important to distinguish between two types of innovations: a) global innovations, which is 
news generated around the world and has an influence on stock prices in all markets, b) specific innovations, 
which is the information generated during a 24 hour period and only affects the price of a particular market. 
Thus, information on the evolution of oil prices can be considered as a global innovation, while a new 
financial sector regulation in a country would be considered a specific innovation. 

According to the above discussion, stock prices quoted at a session of a particular stock market 
are affected by the global innovations of a different market which had closed earlier. Thus, global 
innovations included in the Tokyo market will influence the market prices of Madrid on the same day. The 
following model shows the transmission of effects between the Tokyo Stock Exchange and the Madrid 
Stock Exchange in 1992: 

 rmad92t =β1+β2rtok92t +ut (4-19) 
where rmad92t is the rate of return of the Madrid Stock Exchange in period t and rtok92t  is the rate of 
return of the Tokyo Stock Exchange in period t. The rates of return have been calculated according to (4-16). 

In the working file madtok you can find general indices of the Madrid Stock Exchange and the 
Tokyo Stock Exchange during the days both exchanges were open simultaneously in 1992. That is, we 
eliminated observations for those days when any one of the two stock exchanges was closed. In total, the 
number of observations is 234, compared to the 247 and 246 days that the Madrid and Tokyo Stock 
Exchanges were open. 

The estimation of the model (4-19) is as follows: 
·

(0.0007) (0.0375)
92 0.0005 0.1244 92t trmad rtok= − +

 
R2=0.0452     n=235 

Note that the coefficient of determination is relatively low. However, for testing H0: β2=0, the 
statistic t = (0.1244/0.0375) = 3.32, which implies that we reject the hypothesis that the rate of return of the 
Tokyo Stock Exchange has no effect on the rate of return of the Madrid Stock Exchange, for a significance 
level of 0.01. 

Once again we find the same apparent paradox which appeared when we analyzed the efficiency 
of the Madrid Stock Exchange in example 4.5 except for one difference. In the latter case, the rate of return 
from the previous day appeared as significant due to problems arising in the elaboration of the general index 
of the Madrid Stock Exchange. 

Consequently, the fact that the null hypothesis is rejected implies that there is empirical evidence 
supporting the theory that global innovations from the Tokyo Stock Exchange are transmitted to the quotes 
of the Madrid Stock Exchange that day.  

4.2.2 Confidence intervals 
Under the CLM, we can easily construct a confidence interval (CI) for the 

population parameter, β j. CI are also called interval estimates because they provide a 
range of likely values for β j, and not just a point estimate. 

The CI is built in such a way that the unknown parameter is contained within the 
range of the CI with a previously specified probability.  

By using the fact that 
ˆ

ˆ( )
j j

n k
j

t
se
b b
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:  
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Operating to put the unknown β j alone in the middle of the interval, we have  
/2 /2ˆ ˆ ˆ ˆPr ( ) ( ) 1j j n k j j j n kse t se tα αβ β β β β α− −

 − × ≤ ≤ + × = −   

Therefore, the lower and upper bounds of a (1-α) CI respectively are given by  
/2ˆ ˆ( )j j j n kse tαβ β β −= − ×  

/2ˆ ˆ( )j j j n kse tαβ β β −= + ×  

If random samples were obtained over and over again with jβ , and jβ  computed 

each time, then the (unknown) population value would lie in the interval ( jβ , jβ ) for (1 
− α)% of the samples. Unfortunately, for the single sample that we use to construct CI, 
we do not know whether βj is actually contained in the interval. 

Once a CI is constructed, it is easy to carry out two-tailed hypothesis tests. If the 
null hypothesis is 0 : j jH aβ = , then 0H  is rejected against 1 : j jH aβ ≠  at (say) the 5% 
significance level if, and only if, aj is not in the 95% CI.  

To illustrate this matter, in figure 4.14 we constructed confidence intervals of 90%, 
95% and 99%, for the marginal propensity to consumption -β2- corresponding to example 
4.1. 

 
FIGURE 4.14. Confidence intervals for marginal propensity to consume in example 4.1. 

4.2.3 Testing hypotheses about a single linear combination of the parameters 
In many applications we are interested in testing a hypothesis involving more than 

one of the population parameters. We can also use the t statistic to test a single linear 
combination of the parameters, where two or more parameters are involved.  

There are two different procedures to perform the test with a single linear 
combination of parameters. In the first, the standard error of the linear combination of 
parameters corresponding to the null hypothesis is calculated using information on the 
covariance matrix of the estimators. In the second, the model is reparameterized by 
introducing a new parameter derived from the null hypothesis and the reparameterized 
model is then estimated; testing for the new parameter indicates whether the null 
hypothesis is rejected or not. The following example illustrates both procedures. 
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EXAMPLE 4.7 Are there constant returns to scale in the chemical industry?  
To examine whether there are constant returns to scale in the chemical sector, we are going to use 

the Cobb-Douglas production function, given by  

 1 2 3ln( ) ln( ) ln( )output labor capital uβ β β= + + +  (4-20) 

In the above model parameters β2 and  β3 are elasticities (output/labor and output/capital). 
Before making inferences, remember that returns to scale refers to a technical property of the 

production function examining changes in output subsequent to a change of the same proportion in all 
inputs, which are labor and capital in this case. If output increases by that same proportional change then 
there are constant returns to scale. Constant returns to scale imply that if the factors labor and capital 
increase at a certain rate (say 10%), output will increase at the same rate (e.g., 10%). If output increases by 
more than that proportion, there are increasing returns to scale. If output increases by less than that 
proportional change, there are decreasing returns to scale. In the above model, the following occurs  

- if β2+β3=1, there are constant returns to scale. 
- if β2+β3>1, there are increasing returns to scale. 
- if β2+β3<1, there are decreasing returns to scale. 
Data used for this example are a sample of  27 companies of the primary metal sector (workfile 

prodmet), where output is gross value added, labor is a measure of labor input, and capital is the gross 
value of plant and equipment. Further details on construction of the data are given in Aigner, et al. (1977) 
and in Hildebrand and Liu (1957); these data were used by Greene in 1991. The results obtained in the 
estimation of model (4-20), using any econometric software available, appear in table 4.4. 

TABLE 4.4. Standard output of the estimation of the production function: 
model (4-20). 
Variable Coefficient Std. Error t-Statistic Prob. 

constant 1.170644 0.326782 3.582339 0.0015 
ln(labor) 0.602999 0.125954 4.787457 0.0001 
ln(capital) 0.375710 0.085346 4.402204 0.0002 

 
To answer the question posed in this example, we must test  
 0 2 3: 1H β β+ =   

against the following alternative hypothesis 
 1 2 3: 1H β β+ ≠   

According to H0, it is stated that 2 3 1 0β β+ − = . Therefore, the t statistic must now be based on 

whether the estimated sum 2 3
ˆ ˆ 1β β+ −  is sufficiently different from 0 to reject H0 in favor of H1.  

Two procedures will be used to test this hypothesis. In the first, the covariance matrix of the 
estimators is used. In the second, the model is reparameterized by introducing a new parameter. 
Procedure: using covariance matrix of estimators 

According to 0H , it is stated that 2 3 1 0β β+ − = . Therefore, the t statistic must now be based on 

whether the estimated sum 2 3
ˆ ˆ 1β β+ −  is sufficiently different from 0 to reject H0 in favor of H1. To 

account for the sampling error in our estimators, we standardize this sum by dividing by its standard error: 

 
2 3

2 3
ˆ ˆ

2 3

ˆ ˆ 1
ˆ ˆ( )

t
seβ β

β β
β β+

+ −
=

+
  

Therefore, if 
2 3

ˆ ˆt
β β+ is large enough, we will conclude, in a two side alternative test, that there are 

not constant returns to scale. On the other hand, if 
2 3

ˆ ˆt
β β+  is positive and large enough, we will reject, in a 

one side alternative test (right), H0 in favour of 1 2 3: 1H β β+ > . Therefore, there are increasing returns to 
scale. 
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On the other hand , we have  
·

2 3 2 3
ˆ ˆ ˆ ˆ( ) var( )se β β β β+ = +  

where 

 · · · ·
2 3 2 3 2 3

ˆ ˆ ˆ ˆ ˆ ˆvar( ) var( ) var( ) 2 covar( , )β β β β β β+ = + + ×   

Hence, to compute 2 3
ˆ ˆ( )se β β+  you need information on the estimated covariance of estimators. 

Many econometric software packages (such as e-views) have an option to display estimates of the 
covariance matrix of the estimator vector ’. In this case, the covariance matrix obtained appears in table 4.5. 
Using this information, we have  

2 3
ˆ ˆ( ) 0.015864 0.007284 2 0.009616 0.0626se β β+ = + − × =  

2 3

2 3
ˆ ˆ

2 3

ˆ ˆ 1 0.02129 0.3402ˆ ˆ 0.0626( )
t

seβ β

β β
β β+

+ − −
= = = −

+
 

TABLE 4.5. Covariance matrix in the production function. 
 constant ln(labor) ln(capital) 

constant  0.106786 -0.019835  0.001189 
ln(labor)) -0.019835  0.015864 -0.009616 
ln(capital)  0.001189 -0.009616  0.007284 

Given that t=0.3402, it is clear that we cannot reject the existence of constant returns to scale for 
the usual significance levels. Given that the t statistic is negative, it makes no sense to test whether there 
are increasing returns to scale  
Procedure: reparameterizing the model by introducing a new parameter  

It is easier to perform the test if we apply the second procedure. A different model is estimated in 
this procedure, which directly provides the standard error of interest. Thus, let us define:  

2 3 1θ β β= + −  

thus, the null hypothesis that there are constant returns to scale is equivalent to saying that 0 : 0H θ = . 

From the definition of θ, we have 2 3 1β θ β= − + . Substituting β2 in the original equation: 

1 3 3ln( ) ( 1) ln( ) ln( )output labor capital uβ θ β β= + − + + +  

Hence, 

1 3ln( / ) ln( ) ln( / )output labor labor capital labor uβ θ β= + + +  

Therefore, to test whether there are constant returns to scale is equivalent to carrying out a 
significance test on the coefficient of ln(labor) in the previous model. The strategy of rewriting the model 
so that it contains the parameter of interest works in all cases and is usually easy to implement. If we apply 
this transformation to this example, we obtain the results of Table 4.6. 

As can be seen we obtain the same result: 

ˆ

ˆ
0.3402ˆ( )

t
seθ

θ
θ

= = −  

TABLE 4.6. Estimation output for the production function: reparameterized model. 
Variable Coefficient Std. Error t-Statistic Prob. 

constant 1.170644 0.326782 3.582339 0.0015 
ln(labor) -0.021290 0.062577 -0.340227 0.7366 
ln(capital/labor) 0.375710 0.085346 4.402204 0.0002 
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EXAMPLE 4.8 Advertising or incentives? 
The Bush Company is engaged in the sale and distribution of gifts imported from the Near East. 

The most popular item in the catalog is the Guantanamo bracelet, which has some relaxing properties. The 
sales agents receive a commission of 30% of total sales amount. In order to increase sales without expanding 
the sales network, the company established special incentives for those agents who exceeded a sales target 
during the last year. 

Advertising spots were radio broadcasted in different areas to strengthen the promotion of sales. 
In those spots special emphasis was placed on highlighting the well-being of wearing a Guantanamo 
bracelet.  

The manager of the Bush Company wonders whether a dollar spent on special incentives has a 
higher incidence on sales than a dollar spent on advertising. To answer that question, the company's 
econometrician suggests the following model to explain sales:  

1 2 3sales advert incent uβ β β= + + +  

where incent are incentives to the salesmen and advert are expenditures in advertising. The variables sales, 
incent and advert are expressed in thousands of dollars. 

Using a sample of 18 sale areas (workfile advincen), we have obtained the output and the 
covariance matrix of the coefficients that appear in table 4.7 and in table 4.8 respectively. 

TABLE 4.7. Standard output of the regression for example 4.8. 
Variable Coefficient Std. Error t-Statistic Prob. 

constant 396.5945 3548.111 0.111776 0.9125 
advert 18.63673 8.924339 2.088304 0.0542 
incent 30.69686 3.604420 8.516448 0.0000 

TABLE 4.8. Covariance matrix for example 4.8. 
 C ADVERT INCENT 

constant 12589095 -26674 -7101 
advert -26674 79.644 2.941 
incent -7101 2.941 12.992 

In this model, the coefficient β2 indicates the increase in sales produced by a dollar increase in 
spending on advertising, while β3 indicates the increase caused by a dollar increase in the special incentives, 
holding fixed in both cases the other regressor. 

To answer the question posed in this example, the null and the alternative hypothesis are the 
following: 

0 3 2

1 3 2

: 0
: 0

H
H

β β
β β

− =
− >

 

The t statistic is built using information about the covariance matrix of the estimators: 

 
3 2

3 2
ˆ ˆ

3 2

ˆ ˆ
ˆ ˆ( )

t
seβ β

β β
β β−

−
=

−
  

3 2
ˆ ˆ( ) 79.644 12.992 2 2.941 9.3142se β β− = + − × =  

3 2

3 2
ˆ ˆ

3 2

ˆ ˆ 30.697 18.637 1.295ˆ ˆ 9.3142( )
t

seβ β

β β
β β−

− −
= = =

−
 

For α=0.10, we find that 0.10
15 1.341t = . As t<1.341, we do not reject H0 for α=0.10, nor for α=0.05 

or α=0.01. Therefore, there is no empirical evidence that a dollar spent on special incentives has a higher 
incidence on sales than a dollar spent on advertising. 

EXAMPLE 4.9 Testing the hypothesis of homogeneity in the demand for fish 
In the case study in chapter 2, models for demand for dairy products have been estimated from 

cross-sectional data, using disposable income as an explanatory variable. However, the price of the product 
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itself and, to a greater or lesser extent, the prices of other goods are determinants of the demand. The 
demand analysis based on cross sectional data has precisely the limitation that it is not possible to examine 
the effect of prices on demand because prices remain constant, since the data refer to the same point in time. 
To analyze the effect of prices it is necessary to use time series data or, alternatively, panel data. We will 
briefly examine some aspects of the theory of demand for a good and then move to the estimation of a 
demand function with time series data. As a postscript to this case, we will test one of the hypotheses which, 
under certain circumstances, a theoretical model must satisfy. 

The demand for a commodity - say good j - can be expressed, according to an optimization process 
carried out by the consumer, in terms of disposable income, the price of the good and the prices of the other 
goods. Analytically: 

 1 2( , , , , , , )j j j mq f p p p p di= L L  (4-21) 

where 

 - di is the disposable income of the consumer. 
- 1 2, , , ,j mp p p pL L  are the prices of the goods which are taken into account by 

consumers when they acquire the good j. 
Logarithmic models are attractive in studies on demand,, because the coefficients are directly 

elasticities. The log model  is given by 
 

1 2 1 3 2 1 2ln( ln( ) ln( ) ln( ) ln( ) ln( )j j j m m mq p p p p R uβ β β β β β+ +) = + + + + + + + +   (4-22) 

It is clear to see that all β coefficients, excluding the constant term, are elasticities of different 
types and therefore are independent of the units of measurement for the variables. When there is no money 
illusion, if all prices and income grow at the same rate, the demand for a good is not affected by these 
changes. Thus, assuming that prices and income are multiplied by λ, if the consumer has no money illusion, 
the following should be satisfied  

 1 2 1 2( , , , , , , ) ( , , , , , )j j m j j mf p p p p R f p p p p dil l l l lL L L L=  (4-23) 

From a mathematical point of view, the above condition implies that the demand function must be 
homogeneous of degree 0. This condition is called the restriction of homogeneity. Applying Euler's theorem, 
the restriction of homogeneity in turn implies that the sum of the demand/income elasticity and of all 
demand/price elasticities is zero, i.e.: 

 
1

0
j h j

m

q p q R
h

ε ε/ /
=

+ =∑  (4-24) 

This restriction applied to the logarithmic model (4-22) implies that 
 2 3 1 2 0j m mβ β β β β+ ++ + + + + + =   (4-25) 

In practice, when estimating a demand function, the prices of many goods are not included, but 
only those that are closely related, either because they are complementary or substitute goods. It  is also 
well known that the budgetary allocation of spending is carried out in several stages. 

Next, the demand for fish in Spain will be studied by using a model similar to (4-22). Let us 
consider that in a first assignment, the consumer distributes its income between total consumption and 
savings. In a second stage, the consumption expenditure by function is performed taking into account the 
total consumption and the relevant prices in each function. Specifically, we assume that the only relevant 
price in the demand for fish is the price of the good (fish) and the price of the most important substitute 
(meat). 

Given the above considerations, the following model is formulated: 

 1 2 3 4ln( ln( ) ln( ) ln( )fish fishpr meatpr cons uβ β β β) = + + + +  (4-26) 
where fish is fish expenditure at constant prices, fishpr is the price of fish, meatpr is the price of meat and 
cons is total consumption at constant prices. 

The workfile fishdem contains information about this series for the period 1964-1991. Prices are 
index numbers with 1986 as a base, and fish and cons are magnitudes at constant prices with 1986 as a base 
also. The results of estimating model (4-26) are as follows: 
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 ·
(2.30) (0.133) (0.112) (0.137)

ln( 7.788 0.460ln( ) 0.554ln( ) 0.322ln( )fish fishpr meatpr cons) = - + +  

As can be seen, the signs of the elasticities are correct: the elasticity of demand is negative with 
respect to the price of the good, while the elasticities with respect to the price of the substitute good and 
total consumption are positive 

In model (4-26) the homogeneity restriction implies the following null hypothesis: 
 2 3 4β β β+ + = 0  (4-27) 

To carry out this test, we will use a similar procedure to the one used in example 4.6. Now, the  
parameter θ is defined as follows 

 2 3 4θ β β β= + +  (4-28) 

Setting 2 3 4β θ β β= − − , the following model has been estimated: 

 1 3 4ln( ln( ) ln( ) ln( )fish fishpr meatpr fishpr cons fishpr uβ θ β β) = + + / + / +
 (4-29) 

The results obtained were the following: 
·

(2.30) (0.1334) (0.112) (0.137)
ln( 7.788 0.4596ln( ) 0.554ln( ) 0.322ln( )i i i ifish fishpr meatpr cons) = - + +  

Using (4-28), testing the null hypothesis (4-27) is equivalent to testing that the coefficient of 
ln(fishpr) in (4-29) is equal to 0. Since the t statistic for this coefficient is equal to -3.44 and 0.01/2

24t =2.8, 
we reject the hypothesis of homogeneity regarding the demand for fish. 

4.2.4 Economic importance versus statistical significance 
Up until now we have emphasized statistical significance. However, it is 

important to remember that we should pay attention to the magnitude and the sign of the 
estimated coefficient in addition to t statistics. 

Statistical significance of a variable xj is determined entirely by the size of ˆ
j

t
β

, 

whereas the economic significance of a variable is related to the size (and sign) of ˆ
jβ . 

Too much focus on statistical significance can lead to the false conclusion that a variable 
is “important” for explaining y, even though its estimated effect is modest. 

Therefore, even if a variable is statistically significant, you need to discuss the 
magnitude of the estimated coefficient to get an idea of its practical or economic 
importance.  

4.3 Testing multiple linear restrictions using the F test. 
So far, we have only considered hypotheses involving a single restriction. But 

frequently, we wish to test multiple hypotheses about the underlying parameters 
1 2 3, , , , kβ β β β . 

In multiple linear restrictions, we will distinguish three types: exclusion 
restrictions, model significance and other linear restrictions. 
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4.3.1 Exclusion restrictions 

Null and alternative hypotheses; unrestricted and restricted model 
We begin with the leading case of testing whether a set of independent variables 

has no partial effect on the dependent variable, y. These are called exclusion restrictions. 
Thus, considering the model 

 1 2 2 3 3 4 4 5 5y x x x x uβ β β β β= + + + + +  (4-30) 

the null hypothesis in a typical example of exclusion restrictions could be the following: 

0 4 5: 0H β β= =  

This is an example of a set of multiple restrictions, because we are putting more 
than one restriction on the parameters in the above equation. A test of multiple restrictions 
is called a joint hypothesis test. 

The alternative hypothesis can be expressed in the following way 
H1: H0 is not true 

It is important to remark that we test the above H0 jointly, not individually. Now, 
we are going to distinguish between unrestricted (UR) and restricted (R) models. The 
unrestricted model is the reference model or initial model. In this example the unrestricted 
model is the model given in (4-30). The restricted model is obtained by imposing H0 on 
the original model. In the above example, the restricted model is 

1 2 2 3 3y x x uβ β β= + + +  

By definition, the restricted model always has fewer parameters than the 
unrestricted one. Moreover, it is always true that 

RSSR≥RSSUR 
where RSSR is the RSS of the restricted model, and RSSUR is the RSS of the unrestricted 
model. Remember that, because OLS estimates are chosen to minimize the sum of squared 
residuals, the RSS never decreases (and generally increases) when certain restrictions 
(such as dropping variables) are introduced into the model. 

The increase in the RSS when the restrictions are imposed can tell us something 
about the likely truth of H0. If we obtain a large increase, this is evidence against H0, and 
this hypothesis will be rejected. If the increase is small, this is not evidence against H0, 
and this hypothesis will not be rejected. The question is therefore whether the observed 
increase in the RSS when the restrictions are imposed is large enough, relative to the RSS 
in the unrestricted model, to warrant rejecting H0.  

The answer depends on α, but we cannot carry out the test at a chosen α until we 
have a statistic whose distribution is known, and is tabulated, under H0. Thus, we need a 
way to combine the information in RSSR and RSSUR to obtain a test statistic with a known 
distribution under H0. 

Now, let us look at the general case, where the unrestricted model is 

 1 2 2 3 3 +k ky x x x uβ β β β= + + + +  (4-31) 
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Let us suppose that there are q exclusion restrictions to test. H0 states that q of the 
variables have zero coefficients. Assuming that they are the last q variables, H0 is stated 
as 

 0 1 2: 0k q k q kH β β β− + − += = = =  (4-32) 

The restricted model is obtained by imposing the q restrictions of H0 on the 
unrestricted model. 

 1 2 2 3 3 +k q k qy x x x uβ β β β − −= + + + +  (4-33) 

H1 is stated as 
 H1: H0 is not true (4-34) 

Test statistic: F ratio 
The F statistic, or F ratio, is defined by 

 ( ) /
/ ( )

R UR

UR

RSS RSS qF
RSS n k

−
=

−
 (4-35) 

where RSSR is the RSS of the restricted model, and RSSUR is the RSS of the unrestricted 
model and q is the number of restrictions; that is to say, the number of equalities in the 
null hypothesis. 

In order to use the F statistic for a hypothesis testing, we have to know its sampling 
distribution under H0 in order to choose the value c for a given α, and determine the 
rejection rule. It can be shown that, under H0, and assuming the CLM assumptions hold, 
the F statistic is distributed as a Snedecor’s F random variable with (q,n-k) df. We write 
this result as 

 0 ,q n kF H F -| :  (4-36) 

A Snedecor’s F with q degrees of freedom in the numerator and n-k de degrees of 
freedom in the denominator is equal to 

 
2

, 2
q

q n k

n k

q
F

n k
x

x−

−

/
=

/ −
 (4-37) 

where 2
qx  and 2

n kx −  are Chi-square distributions that are independent of each other. 

In (4-35) we see that the degrees of freedom corresponding to RSSUR (dfUR)are n-
k. Remember that 

 2ˆ UR
UR

RSS
n k

σ =
−

 (4-38) 

On the other hand, the degrees of freedom corresponding to RSSR (dfR) are n-k+q, 
because in the restricted model k-q parameters are estimated. The degrees of freedom 
corresponding to RSSR-RSSUR are 

(n-k+q)-(n-k)=q = numerator degrees of freedom=dfR-dfUR 
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Thus, in the numerator of F, the difference in RSS´s is divided by q, which is the 
number of restrictions imposed when moving from the unrestricted to the restricted model. 
In the denominator of F, RSSUR is divided by dfUR. In fact, the denominator of F is simply 
the unbiased estimator of σ2 in the unrestricted model. 

The F ratio must be greater than or equal to 0, since . 

It is often useful to have a form of the F statistic that can be computed from the 
R2 of the restricted and unrestricted models. 

Using the fact that 2(1 )R RRSS TSS R= −  and 2(1 )UR URRSS TSS R= − , we can write 
(4-35) as the following 

 
2 2

2

( ) /
(1 ) / ( )

UR R

UR

R R qF
R n k

−
=

− −
 (4-39) 

since the SST term is cancelled. 
This is called the R-squared form of the F statistic. 
Whereas the R-squared form of the F statistic is very useful for testing exclusion 

restrictions, it cannot be applied for testing all kinds of linear restrictions. For example, 
the F ratio (4-39) cannot be used when the model does not have intercept or when the 
functional form of the endogenous variable in the unrestricted model is not the same as 
in the restricted model. 

Decision rule 
The Fq,n-k distribution is tabulated and available in statistical tables, where we look 

for the critical value ( ,q n kFα
− ), which depends on α (the significance level), q (the df of the 

numerator), and n-k, (the df of the denominator). Taking into account the above, the 
decision rule is quite simple. 

Decision rule 

 , 0

, 0

If                 reject        

If                 not reject  
q n k

q n k

F F H

F F H

α

α

−

−

≥

<
 (4-40) 

Therefore, we reject H0 in favor of H1 at α when , q n kF Fα
−≥ , as can be seen in 

figure 4.15. It is important to remark that as α decreases, ,q n kFα
−  increases. If H0 is rejected, 

then we say that 1 2, , ,k q k q kx x x− + − +   are jointly statistically significant, or just jointly 
significant, at the selected significance level. 

This test alone does not allow us to say which of the variables has a partial effect 
on y; they may all affect y or only one may affect y. If H0 is not rejected, then we say that 

1 2, , ,k q k q kx x x− + − +   are jointly not statistically significant, or simply jointly not significant, 
which often justifies dropping them from the model. The F statistic is often useful for 
testing the exclusion of a group of variables when the variables in the group are highly 
correlated. 

0R URSSR SSR− ≥
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FIGURE 4.15. Rejection region and non rejection 

region using F distribution. 
 

FIGURE 4.16. p-value using F distribution. 

In the F testing context, the p-value is defined as 

0- Pr(  ' | )p value F F H= >  

where F is the actual value of the test statistic and 'F  denotes a Snedecor’s F random 
variable with (q,n-k) df. 

The p-value still has the same interpretation as for t statistics. A small p-value is 
evidence against H0, while a large p-value is not evidence against H0. Once the p-value 
has been computed, the F test can be carried out at any significance level. In figure 4.16 
this alternative approach is represented. As can be seen by observing the figure, the 
determination of the p-value is the inverse operation to find the value in the statistical 
tables for a given significance level. Once the p-value has been determined, we know that 
H0 is rejected for any level of significance of α>p-value, whereas the null hypothesis is 
not rejected when α<p-value.  
EXAMPLE 4.10 Wage, experience, tenure and age 

The following model has been built to analyze the determinant factors of wage: 

1 2 3 4 5ln( )wage educ exper tenure age uβ β β β β= + + + + +  

where wage is monthly earnings, educ is years of education, exper is years of work experience, tenure is 
years with current employer, and age is age in years. 

The researcher is planning to exclude tenure from the model, since in many cases it is equal to 
experience, and also age, because it is highly correlated with experience. Is the exclusion of both variables 
acceptable? 

The null and alternative hypotheses are the following: 

0 4 5

1 0

: 0
:  is not true

H
H H

β β= =
 

The restricted model corresponding to this H0 is  

1 2 3ln( )wage educ exper uβ β β= + + +  

Using a sample consisting of 53 observations from workfile wage2, we have the following 
estimations for the unrestricted and for the restricted models: 

·ln( ) 6.476 0.0658 0.0267 0.0094 0.0209    5.954i i i i iwage educ exper tenure age RSS= + + - - =
·ln( ) 6.157 0.0457 0.0121       6.250i i iwage educ exper RSS= + + =  

Non 
Rejection
Region  
NRR

Rejection
Region 

RR

,q n kF −

,q n kFα
−

α
p-value

F

,q n kF −

Non rejected 
for

α<p-value

Rejected 
for

α>p-value
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The F ratio obtained is the following: 

( ) / (6.250 5.954) / 2 1.193
/ ( ) 5.954 / 48

R UR

UR

RSS RSS q
F

RSS n k
− −

= = =
−

 

Given that the F statistic is low, let us see what happens with a significance level of 0.10. In this 
case the degrees of freedom for the denominator are 48 (53 observations minus 5 estimated parameters). If 
we look in the F statistical table for 2 df in the numerator and 45 df in the denominator, we find 0.10 0.10

2,48 2,45F F;
=2.42. As F<2.42, we do not reject H0. If we do not reject H0 for 0.10, we will not reject H0 for 0.05 or 0.01, 
as can been in figure 4.17. Therefore, we cannot reject H0 in favor of H1. In other words tenure and age are 
not jointly significant. 

 
FIGURE 4.17. Example 4.10: Rejection region using F distribution (α values are from a F2.40). 

4.3.2 Model significance 
Testing model significance, or overall significance, is a particular case of testing 

exclusion restrictions. Model significance means global significance of the model. One 
could think that the 0H  in this test is the following: 

 0 1 2 3: 0kH β β β β= = = = =  (4-41) 

However, this is not the adequate 0H  to test for the global significance of the 
model. If 2 3 0kβ β β= = = = , then the restricted model would be the following: 

 1+y uβ=  (4-42) 

If we take expectations in (4-42), then we have  

 1( )E y β=  (4-43) 

Thus, 0H  in (4-41) states not only that the explanatory variables have no 
influence on the endogenous variable, but also that the mean of the endogenous variable–
for example, the consumption mean- is equal to 0.  

Therefore, if we want to know whether the model is globally significant, the 0H  
must be the following: 

 0 2 3: 0kH β β β= = = =  (4-44) 

The corresponding restricted model given in (4-42) does not explain anything and, 
therefore, 2

RR  is equal to 0. Testing the  given in (4-44) is very easy by using the R-
squared form of the F statistic: 

Non Rejection
Region  
NRR
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2

2

/
(1 ) / ( )

R kF
R n k

=
− −

 (4-45) 

where 2R  is the 2
URR , since only the unrestricted model needs to be estimated, because 

the 2R  of the model (4-42) – restricted model- is 0. 
EXAMPLE 4.11 Salaries of CEOs  

Consider the following equation to explain salaries of Chief Executive Officers (CEOs) as a 
function of annual firm sales, return on equity (roe, in percent form), and return on the firm's stock (ros, in 
percent form):  

ln(salary) = β1+β2ln(sales)+β3roe+β4ros+ u. 
The question posed is whether the performance of the company (sales, roe and ros) is crucial to 

set the salaries of CEOs. To answer this question, we will carry out an overall significance test. The null 
and alternative hypotheses are the following: 

0 2 3 4: 0H β β β= = =  

H1: H0 is not true 
Table 4.9 shows an E-views complete output for least square (ls) using the filework ceosal1. At 

the bottom the “F-statistic” can be seen for overall test significance, as well as “Prob”, which is the p-value 
corresponding to this statistic. In this case the p-value is equal to 0, that is to say, H0 is rejected for all 
significance levels (See figure 4.18). Therefore, we can reject that the performance of a company has no 
influence on the salary of a CEO. 

 
FIGURE 4.18. Example 4.11: p-value using F distribution (α values are for a F3,140). 
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TABLE 4.9. Complete output from E-views in the example 4.11. 
Dependent Variable: 
LOG(SALARY)       
Method: Least Squares      
Date: 04/12/12   Time: 19:39     
Sample: 1 209      
Included observations: 209     
       

Variable Coefficient Std. Error t-Statistic Prob.   
       
C 4.311712 0.315433 13.66919 0.0000 
LOG(SALES) 0.280315 0.03532 7.936426 0.0000 
ROE 0.017417 0.004092 4.255977 0.0000 
ROS 0.000242 0.000542 0.446022 0.6561 
       
R-squared 0.282685 Mean dependent var 6.950386 
Adjusted R-squared 0.272188 S.D. dependent var 0.566374 
S.E. of regression 0.483185 Akaike info criterion 1.402118 
Sum squared resid 47.86082 Schwarz criterion 1.466086 
Log likelihood -142.5213 F-statistic 26.9293 
Durbin-Watson stat 2.033496 Prob(F-statistic) 0.0000 

 

4.3.3 Testing other linear restrictions 
So far, we have tested hypotheses with exclusion restrictions using the F statistic. 

But we can also test hypotheses with linear restrictions of any kind. Thus, in the same test 
we can combine exclusion restrictions, restrictions that impose determined values to the 
parameters and restrictions on linear combination of parameters.  

Therefore, let us consider the following model  

1 2 2 3 3 4 4 5 5y x x x x uβ β β β β= + + + + +  

and the null hypothesis: 

2 3

40

5

1
       3:
       0

H
β β

β
β

+ =
 =
 =

 

The restricted model corresponding to this null hypothesis is 

2 4 1 3 3 2( 3 ) ( )y x x x x uβ β− − = + − +  

In the example 4.12, the null hypothesis consists of two restrictions: a linear 
combination of parameters and an exclusion restriction. 
EXAMPLE 4.12 An additional restriction in the production function. (Continuation of example 4.7) 

In the production function of Cobb-Douglas, we are going to test the following H0 which has two 
restrictions: 

2 3
0

1

1 0

1
:

      0
:  is not true

H

H H

β β
β

+ =
 =  
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In the first restriction we impose that there are constant returns to scale. In the second restriction 
that β1, parameter linked to the total factor productivity is equal to 0. 

Substituting the restriction of H0 in the original model (unrestricted model), we have  

3 3ln( ) (1 ) ln( ) ln( )output labor capital uβ β= − + +  

Operating, we obtain the restricted model: 

3ln( / ) ln( / )output labor capital labor uβ= +  

In estimating the unrestricted and restricted models, we get RSSR=3.1101 and RSSUR=0.8516. 
Therefore, the F ratio is 

( ) / (3.1101 0.8516) / 2 13.551
/ ( ) 0.8516 / (27 3)

R UR

UR

RSS RSS q
F

RSS n k
− −

= = =
− −

 

There are two reasons for not using R2 in this case. First, the restricted model has no intercept. 
Second, the regressand of the restricted model is different from the regressand of the unrestricted model. 

Since the F value is relatively high, let us start by testing with a level of 1%. For α=0.01, 
0.01

2,24 5.61F = . Given that F>5.61, we reject H0 in favour of H1. Therefore, we reject the joint hypotheses that 
there are constant returns to scale and that the parameter β1 is equal to 0. If H0 is rejected for α=0.01, it will 
also be rejected for levels of 5% and 10%. 

4.3.4 Relation between F and t statistics 
So far, we have seen how to use the F statistic to test several restrictions in the 

model, but it can be used to test a single restriction. In this case, we can choose between 
using the F statistic or the t statistic to carry out a two-tail test. The conclusions would, 
nevertheless, be exactly the same.  

But, what is the relationship between an F with one degree of freedom in the 
numerator (to test a single restriction) and a t? It can be shown that  

 2
1,n k n kt F− −=  (4-46) 

This fact is illustrated in figure 4.19. We observe that the tail of the F splits into 
the two tails of the t. Hence, the two approaches lead to exactly the same outcome, 
provided that the alternative hypothesis is two-sided. However, the t statistic is more 
flexible for testing a single hypothesis, because it can be used to test 0H  against one-tail 
alternatives. 

 
FIGURE 4.19. Relationship between a F1,n-k and a t n-k. 
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Moreover, since the t statistics are also easier to obtain than the F statistics, there 
is no good reason for using an F statistic to test a hypothesis with a unique restriction.  

4.4 Testing without normality 
The normality of the OLS estimators depends crucially on the normality 

assumption of the disturbances. What happens if the disturbances do not have a normal 
distribution? We have seen that the disturbances under the Gauss-Markov assumptions, 
and consequently the OLS estimators are asymptotically normally distributed, i.e. 
approximately normally distributed. 

If the disturbances are not normal, the t statistic will only have an approximate t 
distribution rather than an exact one. As it can be seen in the t student table, for a sample 
size of 60 observations the critical points are practically equal to the standard normal 
distribution.  

Similarly, if the disturbances are not normal, the F statistic will only have an 
approximate F distribution rather than an exact one, when the sample size is large enough 
and the Gauss-Markov assumptions are fulfilled. Therefore, we can use the F statistic to 
test linear restrictions in linear models as an approximate test.  

There are other asymptotic tests (the likelihood ratio, Lagrange multiplier and 
Wald tests) based on the likelihood functions that can be used in testing linear restriction 
if the disturbances are non-normally distributed. These three can also be applied when a) 
the restrictions are nonlinear; and b) the model is nonlinear in the parameters. For non-
linear restrictions, in linear and non-linear models, the most widely used test is the Wald 
test.  

For testing the assumptions of the model (for example, homoskedasticity and no 
autocorrelation) the Lagrange multiplier (LM) test is usually applied. In the application 
of the LM test, an auxiliary regression is often run. The name of auxiliary regression 
means that the coefficients are not of direct interest: only the R2 is retained. In an auxiliary 
regression the regressand is usually the residuals (or functions of the residuals), obtained 
in the OLS estimation of the original model, while the regressors are often the regressors 
(and/or functions of them) of the original model. 

4.5 Prediction 
In this section two types of prediction will be examined: point and interval 

prediction. 

4.5.1 Point prediction  
Obtaining a point prediction does not pose any special problems, since it is a 

simple extrapolation operation in the context of descriptive methods. 

Let 0 0 0
2 3, , , kx x x  denote the particular values in each of the k regressors for 

prediction; these may or may not correspond to an actual data point in our sample. If we 
substitute these values in the multiple regression model, we have  

 0 0 0 0 0 0 0
1 2 2 3 3 ... k ky x x x u uβ β β β θ= + + + + + = +  (4-47) 

Therefore, the expected, or mean, value of y is given by  
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 0 0 0 0 0
1 2 2 3 3( ) ... k kE y x x xβ β β β θ= + + + + =  (4-48) 

The point prediction is obtained straightaway by replacing the parameters of 
(4-48) by the corresponding OLS estimators: 

 0 0 0 0
1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ
k kx x xθ β β β β= + + + +  (4-49) 

To obtain (4-49) we did not need any assumption. But, if we adopt the 
assumptions 1 to 6, we will immediately find that that 0θ̂  is an unbiased predictor of 0θ :  

 0 0 0 0 0 0 0 0
1 2 2 3 3 1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ ...k k k kE E x x x x x xθ β β β β β β β β θ   = + + + + = + + + + =   

 (4-50) 
On the other hand, adopting the Gauss Markov assumptions (1 to 8), it can be 

proved that this point predictor is the best linear unbiased estimator (BLUE). 

We have a point prediction for θ0, but, what is the point prediction for y0? To 
answer this question, we have to predict u0. As the error is not observable, the best 
predictor for u0

 is its expected value, which is 0. Therefore,  

 0 0ˆŷ θ=  (4-51) 

4.5.2 Interval prediction 
Point predictions made with an econometric model will in general not coincide 

with the observed values due to the uncertainty surrounding economic phenomena.  
The first source of uncertainty is that we cannot use the population regression 

function because we do not know the parameters β’s. Instead we have to use the sample 
regression function. The confidence interval for the expected value – i.e. for 0θ - which 
will examine next, includes only this type of uncertainty. 

The second source of uncertainty is that in an econometric model, in addition to 
the systematic part, there is a disturbance which is not observable. The prediction interval 
for an individual value – i.e. for y0-, which will be discussed later on includes both the 
uncertainty arising from the estimation as well as the disturbance term. 

A third source of uncertainty may come from the fact of not knowing exactly what 
values the explanatory variables will take for the prediction we want to make. This third 
source of uncertainty, which is not addressed here, complicates calculations for the 
construction of intervals. 

Confidence interval for the expected value 

If we are predicting the expected value of y, which is 0θ , then the prediction error 
0
1̂e  will be 0 0 0

1
ˆê θ θ= − . According to (4-50), the expected prediction error is zero. Under 

the assumptions of the CLM,  
0 0 0
1

0 0

ˆˆ
ˆ ˆ( ) ( ) n k

e t
se se

θ θ
θ θ −

−
= :  

Therefore, we can write that  
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0 0
/2 /2

0

ˆ
Pr 1ˆ( )

n k n kt t
se

α αθ θ α
θ

− −
 −
− ≤ ≤ = − 

 
 

Operating, we can construct a (1-α)% confidence interval (CI) for 0θ  with the 
following structure:  

 0 0 /2 0 0 0 /2ˆ ˆ ˆ ˆPr ( ) ( ) 1n k n kse t se tα αθ θ θ θ θ α− −
 − × ≤ ≤ + × = −   (4-52) 

To obtain a CI for 0θ , we need to know the standard error ( 0̂( )se θ ) for 0θ̂ . In any 
case, there is an easy way to calculate it. Thus, solving (4-48) for β1 we find that 

0 0 0 0
1 2 2 3 3 ... k kx x xβ θ β β β= − − − − . Plugging this into the equation (4-47), we obtain 

 0 0 0 0
2 2 2 3 3 3( ) ( ) ( )k k ky x x x x x x uθ β β β= + − + − + + − +  (4-53) 

Applying OLS to (4-53), in addition to the point prediction, we obtain 0ˆ( )se θ
which is the standard error corresponding to the intercept in this regression. The previous 
method allows us to put a CI around the OLS estimate of E(y), for any values of the x´s.  

Prediction interval for an individual value  
We are now going to construct an interval for y0, usually called prediction interval 

for an individual value, or for short, prediction interval. According to (4-47), y0 has two 
components:  

 0 0 0y uθ= +  (4-54) 

The interval for the expected value built before is a confidence interval around 0θ  
wcich is a combination of the parameters. In contrast, the interval for y0 is random, 
because one of its components, u0, is random. Therefore, the interval for y0 is a 
probabilistic interval and not a confidence interval. The mechanics for obtaining it are the 
same, but bear in mind that now we are going to consider that the set  0 0 0

2 3, , , kx x xL vis 
outside from of the sample used to estimate the regression. 

The prediction error ( 0
2ê ) in using 0ŷ  to predict y0 is 

 0 0 0 0 0 0
2ˆ ˆ ˆe y y u yθ= − = + −  (4-55) 

Taking into account (4-51) and (4-50), and that E(u0)=0, then the expected 
prediction error is zero. In finding the variance of 0

2ê , it must be taken into account that 
u0 is uncorrelated with 0ŷ  because 0 0 0

2 3, , , kx x xL  is not in the sample. 

Therefore, the variance of the prediction error (conditional on the x´s) is the sum 
of the variances: 

 0 0 0 0 2
2ˆ ˆ ˆ( ) ( ) ( ) ( )Var e Var y Var u Var y σ= + = +  (4-56) 

There are two sources of variation in 0
2ê : 

1. The sampling error in 0ŷ , which arises because we have estimated the βj’s. 
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2. The ignorance of the unobserved factors that affect y, which is reflected in 
σ2. 

Under the CLM assumptions, 0
2ê  is also normally distributed. Using the unbiased 

estimator of σ2 and taking into account that 0 0ˆˆ( ) ( )var y var θ= , we can define the standard 
error (se) of 0

2ê  as 

 { }
1

2 20 0 2
2

ˆˆ ˆ( ) ( )se e se θ σ = +   (4-57) 

Usually 2σ̂  is larger than 
20ˆ( )se θ 

  . Under the assumptions of the CLM,  

 
0
2

0
2

ˆ
ˆ( ) n k

e t
se e −:  (4-58) 

Therefore, we can write that  

 
0
2/2 /2

0
2

ˆ
Pr 1

ˆ( )
n k n k

et t
se e

α α α− −
 
− ≤ ≤ = − 

 
 (4-59) 

Plugging in 0 0 0
2ˆ ˆe y y= −  into (4-59) and rearranging it gives a (1-α)% prediction 

interval for y0:  

 0 0 /2 0 0 0 /2
2 2ˆ ˆ ˆ ˆPr ( ) ( ) 1n k n ky se e t y y se e tα α α− − − × ≤ ≤ + × = −   (4-60) 

EXAMPLE 4. 13 What is the expected score in the final exam with 7 marks in the first short exam? 
The following model has been estimated to compare the marks in the final exam (finalmrk) and in 

the first short exam (shortex1) of Econometrics: 
·

(0.715) (0.123)
4.155 0.491 1i ifinalmrk    shortex  = +  

σ̂ =1.649    R2=0.533     n=16 
To estimate the expected final mark for a student with shortex10=7 mark in the first short exam, 

the following model, according to (4-53), was estimated: 
· ( )

(0.497) (0.123)
7.593 0.491 1 7i ifinalmrk    shortex  = + -  

σ̂ =1.649   R2=0.533     n=16 

The point prediction for shortex10=7 is 0̂θ =7.593 and the lower and upper bounds of a 95% CI 
respectively are given by  

0 0 0 0.05/2
14

ˆ ˆ( ) 7.593 0.497 2.14 6.5se tθ θ θ= − × = − × =  
0 0 0 0.05/2

14
ˆ ˆ( ) 7.593 0.497 2.14 8.7se tθ θ θ= + × = + × =  

Therefore, the student will have a 95% confidence of obtaining on average a final mark located 
between 6.5 and 8.7.  

The point prediction could be also obtained from the first estimated equation: 
· 4.155 0.491 7 7.593finalmrk   = + ´ =  

Now, we are going to estimate a 95% probability interval for the individual value. The se of 0
2ê  is 

equal  
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{ }
1

2 20 0 2 2 2
2ˆ ˆ ˆ( ) ( ) 0.497 1.649 1.722se e se y σ = + = + =   

where 1.649 is the “S. E. of regression” obtained from the E-views output directly. 
The lower and upper bounds of a 95% probability interval respectively are given by  

0 0 0 0.025
2 14ˆ ˆ( ) 7.593 1.722 2.14 3.7y y se e t= − × = − × =  

0 0 0 0.025
2 14ˆ ˆ( ) 7.593 1.722 2.14 11.3y y se e t= + × = + × =  

You must take into account that this probability interval is quite large because the size of the 
sample is very small. 

EXAMPLE 4.14 Predicting the salary of CEOs 
Using data on the most important US companies taken from Forbes (workfile ceoforbes), the 

following equation has been estimated to explain salaries (including bonuses) earned yearly (thousands of 
dollars) in 1999 by the CEOs of these companies:  

·
(104) (0.0013) (8.671) (0.0538)

1381 0.008377 32.508 0.2352i i iisalary    assets  tenure profits= + + +  

σ̂ =1506    R2=0.2404     n=447 
where assets are total assets of firm in millions of dollars, tenure is number of years as CEO in the company, 
and profits are in millions of dollars.  

In Table 4.10 descriptive measures of explanatory variables of the model on CEOs salaries appear. 

TABLE 4.10. Descriptive measures of variables of the model on CEOs salary. 
 assets tenure profits 

 Mean  27054  7.8  700 
 Median  7811  5.0  333 
 Maximum  668641  60.0  22071 
 Minimum  718  0.0 -2669 
 Observations  447  447  447 

 

The predicted salaries and the corresponding se( 0̂θ ) for selected values (maximum, mean, median 
and minimum), using a model as (4-53), appear  in table 4.11.  

TABLE 4.11. Predictions for selected values. 
 Prediction 0̂θ  Std. Error se( 0̂θ ) 

Mean values 2026 71 
Median value 1688 78 
Maximum values 14124 1110 
Minimum values 760 195 

4.5.3 Predicting y in a ln(y) model 
Consider the model in logs: 

 1 2 2 3 3ln( ) +k ky x x x uβ β β β= + + + +  (4-61) 

Obtaining OLS estimates, we predict ln(y) as 

 ·
1 2 2

ˆ ˆ ˆln( ) k ky x xβ β β= + + +L  (4-62) 

Applying exponentiation to (4-62), we obtain the prediction value  

 ·
1 2 2

ˆ ˆ ˆexp(ln( )) exp( )k ky y x xβ β β= = + + +% L  (4-63) 
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However, this prediction is biased and inconsistent because it will systematically 
underestimate the expected value of y. Let us see why. If we apply exponentiation in 
(4-61), we have  

 1 2 2 3 3exp( ) exp( )k ky x x x uβ β β β= + + + + ×  (4-64) 

Before taking expectation in (4-64), we must take into account that if u~N(0,σ2), 

then 
2

(exp( )) exp
2

E u σ 
=  

 
. Therefore, under the CLM assumptions 1 through 9, we 

have 

 2
1 2 2 3 3( ) exp( ) exp( / 2)k kE y x x xβ β β β σ= + + + + ×  (4-65) 

Taking as a reference (4-65), the adequate predictor of y is 

 2 2
1 2 2

ˆ ˆ ˆˆ ˆ ˆexp( ) exp( / 2) exp( / 2)k ky = x x yb b b s s+ + + ´ = %́L
 (4-66) 

where 2σ̂  is the unbiased estimator of σ2.  

It is important to remark that although ŷ  is a biased predictor, it is consistent, 
while y% is biased and inconsistent 

EXAMPLE 4.15 Predicting the salary of CEOs with a log model (continuation 4.14) 
Using the same data as in example 4.14, the following model was estimated: 

·
(0.210) (0.0232) (0.0032) (0.0000195)

ln( ) 5.5168 0.1885ln( ) 0.0125 0.00007i i i isalary    assets  tenure profits= + + +  

σ̂ =0.5499    R2=0.2608     n=447 
salary and assets are taken in natural logs, while profits are in levels because some observations 

are negative and thus not possible to take logs. 
First, we are going to calculate the inconsistent prediction, according to (4-63) for a CEO working 

in a corporation with assets=10000, tenure=10 years and profits=1000: 
² ·exp(ln( ))

exp(5.5168 0.1885ln(10000) 0.0125 10 0.00007 1000) 1716
iisalary salary

   
=

= + + ´ + ´ =
 

Using (4-66), we obtain a consistent prediction: 
· 2exp(0.5499 / 2) 1716 1996salary = ´ =  

4.5.4 Forecast evaluation and dynamic prediction  
In this section we will compare predictions made using an econometric model 

with the actual values in order to evaluate the predictive ability of the model. We will also 
examine the dynamic prediction in models in which lagged endogenous variables are 
included as regressors. 

Forecast evaluation statistics  
Suppose that the sample forecast is i=n+1, n+2,…, n+h, and denote the actual and 

forecasted value in period i as yi and ˆiy , respectively. Now, we present some of the more 
common statistics used for forecast evaluation. 

Mean absolute error (MAE) 
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The MAE is defined as the average of the absolute values of the errors:  

 1
ˆ

n h

i i
i n

y y
MAE

h
==

+

+
-å

 (4-67) 

Absolute values are taken so that positive errors are compensated by the negative 
ones. 

Mean absolute percentage error (MAPE),  

 1

ˆ

100

n h
i i

ii n

y y
y

MAPE
h

==

+

+

-

´
å

 (4-68) 

Root of the mean squared error (RMSE) 
This statistic is defined as the square root of the mean of the squared error: 

 
( )2

1
ˆ

n h

i i
i n

y y
RMSE

h

+

+
-å

==  (4-69) 

As the errors are squared, the compensation between positive and negative errors 
are avoided. It is important to remark that the MSE places a greater penalty on large 
forecast errors than the MAE. 

Theil Inequality Coefficient (U)  
This coefficient is defined as follows: 

 

( )2

1

2 2

1 1

ˆ

ˆ

n h

i i
i n

n h n h

i i
i n i n

y y

hU

y y

h h

+

+

+ +

+ +

-

+

å

å å

=

= =

=  (4-70) 

The smaller U is, the more accurate are the predictions. The scaling of U is such 
that it will always lie between 0 and 1. If U=0, then yi= ˆiy , for all forecasts; if U=1 the 
predictive performance is as bad as it can be. Theil’s U statistic can be rescaled and 
decomposed into three proportions: bias, variance and covariance. Of course the sum of 
these three proportions is 1. The interpretation of these three proportions is as follows: 

1) The bias reflects systematic errors. Whatever the value of U, we would hope 
that the bias is close to 0. A large bias suggests a systematic over or under 
prediction. 

2) The variance also reflects systematic errors. The size of this proportion is an 
indication of the inability of the forecasts to replicate the variability of the 
variable to be forecasted.  
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3) The covariance measures unsystematic errors. Ideally, this should have the 
highest proportion of Theil inequality. 

In addition of the coefficient defined in (4-70), Theil proposed other coefficients 
for forecast evaluation. 

Dynamic prediction 
Let the following model be given: 

 1 2 3 1t t t ty x y uβ β β −= + + +  (4-71) 

Suppose that the sample forecast is i=n+1,…,i=n+h, and denote the actual and 
forecasted value in period i as yi and ˆiy , respectively. The forecast for the period n+1 is 

 1 1 2 1 3
ˆ ˆ ˆˆn n ny x yβ β β+ += + +  (4-72) 

As we can see for the prediction, we use the observed value of y (yn) because it is 
inside the sample used in the estimation. For the remainder of the forecast periods we use 
the recursively computed forecast of the lagged value of the dependent variable (dynamic 
prediction), that is to say,  

 1 2 3 1
ˆ ˆ ˆˆ ˆ           2,3, ,n i n i n iy x y i hβ β β+ + − += + + =   (4-73) 

Thus, from period n+2 to n+h the forecast carried out in a period is used to forecast 
the endogenous variable in the following period. 

Exercises 

Exercise 4.1 To explain the housing price in an American town, the following model is 
formulated: 

1 2 3 4price rooms lowstat crime uβ β β β= + + + +  
where rooms is the number of rooms in the house, lowstat is the percentage of people of 
“lower status” in the area and crime is crimes committed per capita in the area. Prices of 
houses are measured in dollars. 

Using the data in hprice2, the following model has been estimated: 
·

(8022) (1211) (81) (960)
15694 6788 268 3854price rooms lowstat crime= - + - -  

R2=0.771     n=55 
(The numbers in parentheses are standard errors of the estimators.) 

a) Interpret the meaning of the coefficients 2β̂ , 3β̂  and 4β̂ . 
b) Does the percentage of people of “lower status” have a negative influence 

on the price of houses in that area? 
c) Does the number of rooms have a positive influence on the price of 

houses? 

Exercise 4.2 Consider the following model: 

1 2 3 4ln( ) ln( ) 5fruit inc hhsize punder uβ β β β= + + + +  
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where fruit is expenditure in fruit, inc is disposable income of a household, hhsize is the 
number of household members and punder5 is the proportion of children under five in 
the household. 

Using the data in workfile demand, the following model has been estimated: 
·

(3.701) (0.512) (0.179) (0.013)
ln( ) 9.768 2.005ln( ) 1.205 0.0179 5fruit inc hhsize punder= - + - -  

R2=0.728     n=40 
(The numbers in parentheses are standard errors of the estimators.) 

a) Interpret the meaning of the coefficients 2β̂ , 3β̂  and 4β̂ . 
b) Does the number of household members have a statistically significant 

effect on the expenditure in fruit? 
c) Is the proportion of children under five in the household a factor that has 

a negative influence on the expenditure of fruit? 
d) Is fruit a luxury good? 

Exercise 4.3 (Continuation of exercise 2.5). Given the model 

1 2       i 1, 2, ,i i iy x u nβ β= + + =   
the following results have been obtained with a sample size of 11 observations: 

1
0
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i
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=∑  
1
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i
i
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=∑  2
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i
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x x x
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= =

−
=
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∑ ∑

∑ ∑
) 

a) Build a statistic to test 0 2: 0 H β =  against 1 2   : 0H β ≠ . 
b) Test the hypothesis of question a) when 22EB F= . 
c) Test the hypothesis of question a) when 2EB F= . 

Exercise 4.4 The following model has been formulated to explain the spending on food 
(food):  

1 2 3food inc rpfood uβ β β= + + +  
where inc is disposable income and rpfood is the relative price index of food compared 
to other consumer products.  

Taking a sample of observations for 20 successive years, the following results are 
obtained: 

·
(4.92) (0.01) (0.07)
1.40 0.126 0.036i i ifood inc rpfood= + -  

R2=0.996; 2ˆ 0.196tu =∑  

(The numbers in parentheses are standard errors of the estimators.) 
a) Test the null hypothesis that the coefficient of rpfood is less than 0.  
b) Obtain a confidence interval of 95% for the marginal propensity to 

consume food in relation to income.  



INTRODUCTION TO ECONOMETRICS 

142 
 

c) Test the joint significance of the model.  

Exercise 4.5 The following demand function for rental housing is formulated: 
ln(srenhousi)=β1+β2ln(prenhousi)+ β3ln(inci)+εi 

where srenhous is spending on rental housing, prenhous is the rental price, and inc is 
disposable income. 

Using a sample of 403 observations, we obtain the following results: 

( ) ( )ln( ) 10 – 0.7ln 0.9lni i isrenhous prenhous inc= +  

R2=0.39  
1.0 0 0

ˆcov( ) 0 0.09 0.085
0 0.085 0.09

 
 =  
  

β  

a) Interpret the coefficients on ln(prenhous) and ln(inc).  
b) Using a 0.01 significance level, test the null hypothesis that β2=β3=0.  
c) Test the null hypothesis that β2=0, against the alternative that β2<0.  
d) Test the null hypothesis that β3=1 against the alternative that β3 ≠ 1.  
e) Test the null hypothesis that a simultaneous increase in housing prices and 

income has no proportional effect on housing demand.  

Exercise 4.6 The following estimated models corresponding to average cost (ac) 
functions have been obtained, using a sample of 30 firms: 

 

¶
(11.97) (3.70)

2

  172.46 35.72                      

0.838         8090

i iac qty

R RSS

= +

= =  (1) 

 

¶ 2 3
(29.44) (33.81) (11.61) (1.22)

2

 310.07 85.39 26.73 1.40   

                  0.978   1097

i i i iac qty qty qty

R RSS

= − + −

= =  (2) 
where ac is the average cost and qty is the quantity produced. 

(The numbers in parentheses are standard errors of estimators.) 
a) Test whether the quadratic and cubic terms of the quantity produced are 

significant in determining the average cost.  
b) Test the overall significance in the model 2. 

Exercise 4.7 Using a sample of 35 observations, the following models have been 
estimated to explain expenditures on coffee: 

 
·

(0.01) (0.23)
ln( ) 21.32 0.11ln( ) 1.33 ln( ) 1.35ln( )coffee     inc    cprice  tprice  = + - +

 (1) 
2 0 905       254R . RSS= =  

 
·

(0.02) (0.21)
ln( ) 19.9 0.14 ln( ) 1.42 ln( )     coffee    inc  cprice= + -

 (2) 
529RSS =  

where inc is disposable income, cprice is coffee price and tprice is tea price. 
(The numbers in parentheses are standard errors of estimators.) 
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a) Test the overall significance of model (1) 
b) The standard error of ln(tprice) is missing in model (1), can you calculate 

it? 
c) Test whether the price of tea is statistically significant. 
d) How would you test the assumption that the price elasticity of coffee is 

equal but opposite to the price elasticity of tea? Detail the procedure. 

Exercise 4.8 The following model has been formulated to analyse the determinants of air 
quality (airqual) in 30 Standard Metropolitan Statistical Areas (SMSA) of California: 

1 2 3 4 5 6airqual popln medincm poverty fueoil valadd uβ β β β β β= + + + + + +  
where airqual is weight in μg/m3 of suspended particular matter, popln is population in 
thousands, medincm is medium per capita income in dollars, poverty is the percentage of 
families with income less than poverty levels, fueloil is thousands of barrels of fuel oil 
consumed in industrial manufacturing, and valadd is value added by industrial 
manufactures in 1972 in thousands of dollars.  

Using the data in workfile airqualy, the above model has been estimated: 
·

(10.19) (0.0311) (0.0055) (0.0089)

(0.0017) (0.0025)

97.35 0.0956 0.0170 0.0254

0.0031 0.0011

i i ii

i i

airqual popln medincm poverty

fueoil valadd

= + − −

− −
 

R2=0.415     n=30 
(The numbers in parentheses are standard errors of the estimators.) 

a) Interpret the coefficients on medincm, poverty and valadd 
b) Are the slope coefficients individually significant at 10%?  
c) Test the joint significance of fueloil and valadd, knowing that 

·
(10.41) (0.020) (0.0039) (0.0078)

2

97.67 0.0566 0.0102 0.0174

                                  0.339     30    

i i i iairqual popln medincm poverty

R n

= + − −

= =
 

d) If you omit the variable poverty in the first model, the following results are 
obtained: 

·
(0.031) (0.0055)(10.02)

(0.0017) (0.0028)

2

82.98 0.0523 0.0097

0.00063 0.00037

0.218    30     

i i i i

i i

airqual popln medincm

fueoil valadd

R n

= + −

− −

= =

 

Are the slope coefficients individually significant at 10% in the new model? 
Do you consider these results to be reasonable in comparison with those 
obtained in part b). 
Comparing the R2 of the two estimated models, what is the role played by 
poverty in determining air quality?  

e) If you regress airqual using as regressors only the intercept and poverty, 
you will obtain that R2=0.037. Do you consider this value to be reasonable 
taking into account the results obtained in part d)? 
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Exercise 4.9 With a sample of 39 observations, the following production functions by 
OLS was estimated: 

 · 1.30 0.32ˆ exp(0.0055 )t t t toutput labor capital trenda=  R2 = 0.9945  

 · 1.41 0.47ˆ
t t toutput labor capitalb=    R2 = 0.9937  

 · ˆ exp(0.0055 )i toutput trendg=    R2 = 0.9549  
a) Test the joint significance of labor and capital. 
b) Test the significance of the coefficient of the variable trend. 
c) Identify the statistical assumptions under which the test carried out in the 

two previous sections are correct. A further question: Specify the 
population model of the first of the three previous specifications. 

Exercise 4.10 A researcher has developed the following model: 

1 2 2 3 3 u y  x xβ β β += + +  
Using a sample of 43 observations, the following results were obtained: 

1 2ˆ - 0.06 1.44 0.48i i i y   x  x−= +  

1
0.1011 0.0007 0.0005

( ) 0.0231 0.0162
0.0122

−
− − 

 ′ = − 
  

X X

 
2 444iy =∑   

2ˆ 424.92iy =∑  

a) Test that the intercept is less than 0. 
b) Test that β2=2. 
c) Test the null hypothesis that β2+3β3=0. 

Exercise 4.11 Given the function of production 
exp( )q ak l uα β=  

and using data from the Spanish economy over the past 20 years, the following results 
were obtained: 

·ln( ) 0.15 0.73ln( ) 0.47 ln( )i i iq k l= + +  

[ ] 1
4129 95 266

95 3 5
266 5 19

−

− − 
 ′ = − 
 − 

X X         0.017RSS =  

a) Test the individual significance of the coefficients on k and l. 
b) Test whether the parameter α is significantly different from 1. 
c) Test whether there are increasing returns to scale. 

Exercise 4.12 Let the following multiple regression model be: 

0 1 1 2 2y x x uα α α= + + +  
With a sample of 33 observations, this model is estimated by OLS, obtaining the 

following results: 
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1 2ˆ 12.7 14.2 2.1i i iy x x= + +  

[ ] 12

4.1 0.95 0.266
ˆ 0.95 3.8 0.5

0.266 0.5 1.9
σ −

− − 
 ′ = − 
 − 

X X  

a) Test the null hypothesis α0= α1.  
b) Test whether 1 2 7α α/ = . 
c) Are the coefficients α0, α1, y α2 individually significant? 

Exercise 4.13 Using a sample of 30 companies, the following cost functions have been 
estimated: 

· 2 2
(11.97) (3.70)

) 172.46 35.72                                  0.838     0.829     8090i ia cost x R R RSS= + = = =

· 2 3 2 2
(29.44) (33.81) (11.61) (1.22)

) 310.07 85.39 26.73 1.40    0.978   0.974   1097i i i ib cost x x x R R RSS= - + - = = =

where cost is the average cost and x is the quantity produced. 
(The numbers in parentheses are standard errors of estimators.) 

a) Which of the two models would you choose? What would be the criteria? 
b) Test whether the quadratic and cubic terms of the quantity produced are 

significant in determining the average cost. 
c) Test the overall significance of the model b). 

Exercise 4.14 A researcher formulates the following model:  

1 2 2 3 3y x x +u    β β β= + +  
Using a sample of 13 observations the following results are obtained: 

 2 3
2

ˆ 1.00 1.82 0.36
0.50 13

i i iy x x
    R      n          

= − +

= =
  (1) 

0.25 0.01 0.04
ˆvar( ) 0.01 0.16 0.15

0.04 0.15 0.81

− 
 = − − 
 − 

β  

a) Test the null hypothesis that 2 0β = against the alternative hypothesis that

2 0β < . 
b) Test the null hypothesis that 2 3 1β β+ = −  against the alternative 

hypothesis that 2 3 1β β+ ≠ − , with a significance level of 5%. 
c) Is the whole model significant? 
d) Assuming that the variables in the estimated model are measured in natural 

logarithms, what is the interpretation of the coefficient for x3? 

Exercise 4.15 With a sample of 50 automotive companies the following production 
functions were estimated taking the gross value added of the automobile production (gva) 
as the endogenous variable and labor input (labor) and capital input (capital) as 
explanatory variables. 
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1) 
·

(0.11) (0.24)

2 2

ln( ) 3.87 0.80ln( ) 1 24 ln( )

 254      0 75    0 72

i i i gva     labor   .  capital  

RSS R   .  R    .

= + +

= = =
, 

2) 
·

2 2

ln( ) 19 9 1 04ln( )
 529   0 84 0 81

i igva  .   . capital
RSS R . , R .

= +
= = =

                   

3) 
·ln( ) 15.2 0.87 ln( )

 380
i i igva labor    capital labor  

RSS  
/ /= +

=
  

(The numbers in parentheses are standard errors of estimators.) 
a) Test the joint significance of both factors in the production function. 
b) Test whether labor has a significant positive influence on the gross value 

added of automobile production. 
c) Test the hypothesis of constant returns to scale. Explain your answer. 

Exercise 4.16 With a sample of 35 annual observations two demand functions of Rioja 
wine have been estimated. The endogenous variable is spending on Rioja reserve wine 
(wine) and the explanatory variables are disposable income (inc), the average price of a 
bottle of Rioja reserve wine (pwinrioj) and the average price of a bottle of Ribera Duero 
reserve wine (pwinduer). The results are as follows: 
·

(0.01) (0.23) (0.233)
2

ln( ) 21.32 0.11ln( ) 1.33 ln( ) 1.35 ln( )  

0 905   254

i i i ivino     renta    pvinrioj  pvinduer  

 R   . RSS

= + - +

= =
 

·
(0.02) (0.21)

ln( ) 19.9 0.14 ln( ) 1.42 ln( )

529

i i i vino    renta    pvinrioj

RSS

= + -

=  
(The numbers in parentheses are standard errors of the estimators.) 

a) Test the joint significance of the first model. 
b) Test whether the price of wine from Ribera del Duero has a significant 

influence, using two statistics that do not use the same information. Show 
that both procedures are equivalent. 

c) How would you test the hypothesis that the price elasticity of Rioja wine 
is the same but with an opposite sign to the price elasticity of Ribera del 
Duero wine? Detail the procedure to follow. 

Exercise 4.17 To analyze the demand for Ceylon tea (teceil) the following econometric 
model is formulated: 

1 2 3 4 5ln( ) ln( ) ln( ) ln( ) ln( )teceil      inc    pteceil  pteind pcobras uβ β β β β= + + + + +  
where inc is the disposable income, pteceil the price of tea in Ceylon, pteind is the price 
of tea in India and pcobras is the price of Brazilian coffee. 

With a sample of 22 observations the following estimates were made: 
·

(0.17) (0.98)

(0.69) (0.16)

ln( ) 2.83 0.25 ln( ) 1.48 ln( )

1.18 ln( ) 0.19 ln( )

i i i 

i i

teceil      inc    pteceil

 pteind pcofbras

= + -

+ +  
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RSS=0.4277 
·

(0.16) (0.15)
ln( ) 0.74 0.26 ln( ) 0.20 ln( )i i i teceil  pteceil    inc    pcofbras´ = + +

 
RSS=0.6788 

(The numbers in parentheses are standard errors of the estimators.) 
a) Test the significance of disposable income. 
b) Test the hypothesis that 3 1β = −  y 4 0β = , and explain the procedure 

applied. 
c) If instead of having information on RSS, only R2 was known for each model, 

how would you proceed to test the hypothesis of section b)?  

Exercise 4.18 The following fitted models are obtained to explain the deaths of children 
under 5 years per 1000 live births (deathu5) using a sample of 64 countries.  

1)¼ 2

(0.0019) (0.21)
5 263.64 0.0056 2.23 ;                            0.7077i i i deathun     inc    fertrate R= - + =   

2) · 2

(0.0018) (0.25)
5 168.31 0.0055 1.76 12.87 0.7474i i i ideathun      inc    femilrat fertrate , R   = - + + =   

where inc is income per capita, femiltrat is the female illiteracy rate, and fertrate is the 
fertility rate 

(The numbers in parentheses are standard errors of the estimators.) 
a) Test the joint significance of income, illiteracy and fertility rates. 
b) Test the significance of the fertility rate. 
c) Which of the two models would you choose? Explain your answer.  

Exercise 4.19 Using a sample of 32 annual observations, the following estimations were 
obtained to explain the car sales (car) of a particular brand: 

·
6.48) (3.19)

2 2

104.8 6.64 2.98

ˆ 1805.2; ) 13581.4

i i i( (0.16)

i i

          car pcar adv            

u        (car car

= - +

= - =å å
 

where pcar is the price of cars and adv are spending on advertising. 
(The numbers in parentheses are standard errors of the estimators.) 
a) Are price and advertising expenditures significant together? Explain your 

answer. 
b) Can you accept that prices have a negative influence on sales? Explain your 

answer. 
c) Describe in detail how you would test the hypothesis that the impact of 

advertising expenditures on sales is greater than minus 0.4 times the 
impact of the price. 

Exercise 4.20 In a study of the production costs (cost) of 62 coal mines, the following 
results are obtained: 

·
(3.4) (0.005) (2.2) (0.15)
2.20 0.104 3.48 0.104i i i icost dmec geodif absent       = - + +

 
2 2ˆ  109.6     18.48i icp cp u − = = ∑ ∑  
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where dmec is the degree of mechanization, geodif is a measurement of geological 
difficulties and absent is the percentage of absenteeism. 

a) Test the significance of each of the model coefficients. 
b) Test the overall significance of the model. 

Exercise 4.21 With fifteen observations, the following estimation was obtained:  

2 3(1.00) (0.60)

2

ˆ 8.04 2.46 0.23

        0.30

i i iy x x

R

= − +

=
 

where the values between parentheses are standard deviations and the coefficient of 
determination is the adjusted one. 

a) Is the coefficient of the variable x2 significant? 
b) Is the coefficient of the variable x3 significant? 
c) Discuss the joint significance of the model. 

Exercise 4.22 Consider the following econometric specification: 

1 2 2 3 3 4 4y x x x uβ β β β= + + + +  
With a sample of 26 observations, the following estimations were obtained: 

 1)  1 2 3(1.5)(1.9) (2.2)
ˆ 2 3.5 0.7 2i i i i iy x x x u= + − − +   R2=0.982 

 2)  1 2 3(2.7) (2.4)
ˆ 1.5 3 ( ) 0.6i i i i iy x x x u= + + − +   R2= 0.876 

(The t statistics are between brackets) 
a) Show that the following expressions for the F-statistic are equivalent: 

( ) /
/ ( )

R UR

UR

RSS RSS r
F

RSS n k
−

=
−  

( )2 2

2

/
(1 ) / ( )

UR R

UR

R R q
F

R n k
−

=
− −

 

b) Test the null hypothesis β2= β3. 

Exercise 4.23 In the estimation of the Brown model in exercise 3.19, using the workfile 
consumsp, we obtained the following results: 

·
1(84.88) (0.0857) (0.0903)

7.156 0.3965 0.5771t t tconspc incpc conspc −= − + +  

R2=0.997     RSS=1891320      n=56 
Two additional estimations are now obtained: 
·

1 1(84.43) (0.0803)
98.13 0.2757( )t t t tconspc conspc incpc conspc− −− = − + −  

R2=0.1792     RSS=2199474     n=56 
·

1 1(84.88) (0.0090) (0.0903)
7.156 0.0264 0.5771( )t t t tconspc incpc incpc conspc incpc− −− = − − + −  

R2=0.6570     RSS=1891320     n=56 
(The numbers in parentheses are standard errors of the estimators.) 
a) Test the significance of each of the coefficients for the first model. 
b) Test that the coefficient on incpc in the first model is smaller than 0.5. 
c) Test the overall significance of the first model. 
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d) Is it admissible that 2 3 1β β+ = ? 
e) Show that by operating in the third model you can reach the same 

coefficients as in the first model. 

Exercise 4.24 The following model was formulated to analyze the determinants of the 
median base salary in $ for graduating classes of 2010 from the best American business 
schools (salMBAgr): 

1 2 3salMBAgr tuition salMBApr uβ β β= + + +  
where tuition is tuition fees including all required fees for the entire program (but 
excluding living expenses) and salMBApr is the median annual salary in $ for incoming 
classes in 2010.  

Using the data in MBAtui10, the previous model has been estimated: 
·

(5415) (0.0628) (0.1015)
42489 0.1881 0.5992i i isalMBAgr tuition salMBApr= + +  

R2=0.703     n=39 
(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the above model are individually 
significant at 1% and at 5%?  

b) Test the overall significance of the model. 
c) What is the predicted value of salMBAgr for a graduate student who paid 

100000$ tuition fees in a two-year MBA master and previously had a 
salMBApr equal to 70000$? How many years of work does the student 
require to offset tuition expenses? To answer this question, suppose that 
the discount rate equals the expected rate of salary increase and that the 
student received no wage income during the two master courses. 

d) If we added the regressor rank2010 (the rank of each business school in 
2010), the following results were obtained: 

·
(8520) (0.0626) (0.1055)

(85.13)

61320 0.1229 0.4662

                          232.06 2010

i i i

i

salMBAgr tuition salMBApr

rank

= + +

−
 

R2=0.755     n=39 
Which of the regressors included in this model are individually significant 
at 5%? 
What is the interpretation of the coefficient on rank2010? 

e) The variable rank2010 is based on three components: gradpoll is a rank 
based on surveys of MBA grads and contributes 45 percent to final 
ranking; corppoll is a rank based on surveys of MBA recruiters and 
contributes 45 percent to final ranking; and intellec is a rank based on a 
review of faculty research published over a five-year period in 20 top 
academic journals and faculty books reviewed in The New York Times, The 
Wall Street Journal, and Bloomberg Businessweek over the same period; 
this last rank contributes 10 percent to the final ranking. In the following 
estimated model rank2010 has been substituted for its three components: 
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·
(10700) (0.0696) (0.107)

(94.54) (61.26) (64.09)

79904 0.0305 0.3751

303.82 33.829 113.36

i i i

i i i

salMBAgr tuition salMBApr

gradpoll corppoll intellec

= + +

− − −
 

R2=0.797     n=39 
What is the weight in percentage of each one of these three components in 
determining the salMBAgr? Compare the results with the contribution of 
each in defining rank2010. 

f) Are gradpoll, corppoll and intellec jointly significant at 5%? Are they 
individually significant at 5%?  

Exercise 4.25 (Continuation of exercise 3.12). The population model corresponding to 
this exercise is: 

1 2 3 4ln( )wage educ tenure age uβ β β β= + + + +  
Using workfile wage06sp, the previous model was estimated: 

·
(0.073) (0.0035) (0.0019) (0.0016)

ln( ) 1.565 0.0448 0.0177 0.0065i i i iwage educ tenure age= + + +  

R2=0.337     n=800 
(The numbers in parentheses are standard errors of the estimators.) 

a) Test the overall significance of the model. 
b) Is tenure statistically significant at 10%? Is age positively significant at 

10%? 
c) Is it admissible that the coefficient of educ is equal to that of tenure? Is it 

admissible that the coefficient of educ is triple to that of tenure? To answer 
these questions you have the following additional information: 
·

(0.073) (0.0019) (0.0016)(0.0042)
ln( ) 1.565 0.0271 0.0177( ) 0.0065i i i iwage educ educ tenure age= + + + +

 
·

(0.073) (0.0071) (0.0019) (0.0016)
ln( ) 1.565 0.0082 0.0177(3 ) 0.0065i i i iwage educ educ tenure age= − + × + +

Can you calculate the R2 in the two equations in part c)? Please do it. 

Exercise 4.26 (Continuation of exercise 3.13). Let us take the population model of this 
exercise as the reference model. In the estimated model, using workfile housecan, the 
standard errors of the coefficients appear between brackets: 

·
(3379) (1207) (1785) (0.388)
2418 5827 19750 5.411i i i iprice bedrooms bathrms lotsize= − + + +  

R2=0.486     n=546 
a) Test the overall significance of this model. 
b) Test the null hypothesis that an additional bathroom has the same influence 

on housing prices than four additional bedrooms. Alternatively, test that 
an additional bathroom has more influence on housing prices than four 
additional bedrooms. (Additional information: 2

ˆvar( )β =1455813; 

3
ˆvar( )β =3186523; and 2 3

ˆ ˆvar( , )β β =-764846). 
c) If we add the regressor stories (number of stories excluding the basement) 

to the model, the following results have been obtained: 
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·
(3603) (1215) (1734)

(0.369) (1008)

4010 2825 17105

5.429 7635

i i i

i i

price bedrooms bathrms

lotsize stories

= − + +

+ +
 

R2=0.536     n=546 
What do you think about the sign and magnitude of the coefficient on 
stories? Do you find it surprising? What is the interpretation of this 
coefficient? Test whether the number of stories has a significant influence 
on housing prices. 

d) Repeat the tests in part b) with the model estimated in part c). (Additional 
information: 2

ˆvar( )β =1475758; 3
ˆvar( )β =3008262; and 2 3

ˆ ˆvar( , )β β =-
554381). 

Exercise 4.27 (Continuation of exercise 3.14). Let us take the population model of this 
exercise as the reference model. Using workfile ceoforbes, the estimated model was the 
following: 
·

(0.377) (0.0033) (0.0425) (0.0000220) (0.0032)
ln( ) 4.641 0.0054 0.2893ln( ) 0.0000564 0.0122i i i i isalary roa sales profits tenure= + + + +  

R2=0.232     n=447 
(The numbers in parentheses are standard errors of the estimators.) 

a) Does roa have a significant effect on salary? Does roa have a significant 
positive effect on salary? Carry out both tests at the 10% and 5% 
significance level. 

b) If roa increases by 20 points, by what percentage is salary predicted to 
increase?  

c) Test the null hypothesis that the elasticity salary/sales is equal to 0.4. 
d) If we add the regressor age, the following results are obtained: 

·
(0.442) (0.0033) (0.0423) (0.0000220)

(0.0035) (0.0043)

ln( ) 4.159 0.0055 0.2903ln( ) 0.0000539

0.00924 0.00880

i i i

i i

salary roa sales profits

tenure age

= + + +

+ +
 

R2=0.240     n=447 
Are the estimated coefficients very different from the estimates in the 
reference model? What about the coefficient on tenure? Explain it. 

e) Does age have a significant effect on the salary of a CEO? 
f) Is it admissible that the coefficient of age is equal to the coefficient of 

tenure? (Additional information: 5
ˆvar( )β =1.24E-05; 6

ˆvar( )β =1.82E-05; 

and 5 6
ˆ ˆvar( , )β β =-6.09E-06). 

Exercise 4.28 (Continuation of exercise 3.15). Let us take the population model of this 
exercise as the reference model. Using workfile rdspain, the estimated model was the 
following: 

·
(0.428) (0.0278) (0.0021)
1.8168 0.1482ln( ) 0.0110i i irdintens sales exponsal= − + +  

R2=0.048     n=1983 
 (The numbers in parentheses are standard errors of the estimators.) 

a) Is the sales variable individually significant at 1%?  
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b) Test the null hypothesis that the coefficient on sales is equal to 0.2?  
c) Test the overall significance of the reference model. 
d) If we add the regressor ln(workers), the following results are obtained: 
·

(0.750) (0.0687) (0.0021) (0.09198)
0.480 0.08585ln( ) 0.01049 0.3422ln( )rdintens sales exponsal workers= − + +  

R2=0.055     n=1983 
Is sales individually significant at 1% in the new estimated model? 

e) Test the null hypothesis that the coefficient on ln(workers) is greater than 
0.5? 

Exercise 4.29 (Continuation of exercise 3.16). Let us take the population model of this 
exercise as the reference model. Using workfile hedcarsp, the corresponding fitted model 
is the following: 

·
(0.154) (0.0000438) (0.0079) (0.0122)

ln( ) 14.42 0.000581 0.003823 0.07854i i i iprice cid hpweight fueleff= + + −  

R2=0.830     n=214 
(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the reference model are individually 
significant at 1%?  

b) Add the variable volume to the reference model. Does volume have a 
statistically significant effect on ln(price)? Does volume have a statistically 
significant positive effect on ln(price)? 

c) Is it admissible that the coefficient of volume estimated in part b) is equal 
but is the opposite of the coefficient of fueloff? 

d) Add the variables length, width and height to the model estimated in part 
b). Taking into account that volume=length×width×height, is there perfect 
multicollinearity in the new model? Why? Why not? Estimate the new 
model if it is possible. 

e) Add the variable ln(volume) to the reference model. Test the null 
hypothesis that the price/volume elasticity is equal to 1? 

f) What happens if you add the regressors ln(length), ln(width) and ln(height) 
to the model estimated in part e)? 

Exercise 4.30 (Continuation of exercise 3.17). Let us take the population model of this 
exercise as the reference model. Using workfile timuse03, the corresponding fitted model 
is the following: 
·

(23.27) (1.621) (0.00539) (0.311) (0.0229)
141.9 3.850 0.00917 1.767 0.2289i i i i ihouswork educ hhinc age paidwork= + − + −  

R2=0.1440     n=1000 
(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the reference model are individually 
significant at 5% and at 1%?  

b) Estimate a model in which you could test directly whether one additional 
year of education has the same effect on time devoted to house work as 
two additional years of age. What is your conclusion? 

c) Test the joint significance of educ and hhnc. 
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d) Run a regression in which you add the variable childup3 (number of 
children up to three years) to the reference model. In the new model, which 
of the regressors are individually significant at 5% and at 1%?  

e) In the model formulated in d), what is the most influential variable? Why?  

Exercise 4.31 (Continuation of exercise 3.18). Let us take the population model of this 
exercise as the reference model. Using workfile hdr2010, the corresponding fitted model 
is the following: 

·
(0.584) (0.00000617) (0.009)
0.375 0.0000207 0.0858i i istsfglo gnipc lifexpec= − + +  

R2=0.642     n=144 
(The numbers in parentheses are standard errors of the estimators.) 

a) Which of the regressors included in the reference model are individually 
significant at 1%?  

b) Run a regression by adding the variables popnosan (population in 
percentage without access to improved sanitation services) and gnirank 
(rank in gni) to the reference model. Which of the regressors included in 
the new model are individually significant at 1%? Interpret the coefficients 
on popnosan and gnirank. 

c) Are popnosan and gnirank jointly significant? 
d) Test the overall significance of the model formulated in b). 

Exercise 4.32 Using a sample of 42 observations, the following model has been estimated: 
ˆ 670.591 1.008t ty x= − +  

For observation 43, it is known that the value of x is 1571.9. 
a) Calculate the point predictor for observation 43. 
b) Knowing that the variance of the prediction error 43 43 43

2ˆ ˆe y y= −  is equal to 
(24.9048)2, calculate a 90% probability interval for the individual value.  

Exercise 4.33 Besides the estimation presented in exercise 4.23, the following estimation 
on the Brown consumption function is also available:  

·
1(64.35) (0.0857) (0.0903)

12729 0.3965( 13500) 0.5771( 12793.6)t t tconspc incpc conspc −= + − + −  

R2=0.997     RSS=1891320     n=56 
(The numbers in parentheses are standard errors of the estimators.) 

a) Obtain the point predictor for consumption per capita in 2011, knowing 
that incpc2011=13500 and conspc2010=12793.6.  

b) Obtain a 95%confidence interval for the expected value of consumption 
per capita in 2011.  

c) Obtain a 95% prediction interval for the individual value of consumption 
per capita in 2011. 

Exercise 4.34 (Continuation of exercise 4.30) Answer the following questions: 
a) Using the first estimation in exercise 4.30, obtain a prediction for 

houswork (minutes devoted to house-work per day), when you plug in the 



INTRODUCTION TO ECONOMETRICS 

154 
 

equation educ=10 (years), hhinc=1200 (euros per month), age=50 (years) 
and paidwork=400 (minutes per day).  

b) Run a regression, using workfile timuse03, which allows you to calculate 
a 95% CI with the characteristics used in part a).  

c) Obtain a 95% prediction interval for the individual value of houswork with 
the characteristics used in parts a). 

Exercise 4.35 (Continuation of exercise 4.29) Answer the following questions:  
a) Plug in the first equation of the exercise 4.29 of cid=2000 (cubic inch 

displacement), hpweight=10 (ratio horsepower/weight in kg expressed as 
percentage), and fueleff=6 (minutes per day) Obtain the point predictor of 
consumption per capita in 2011, knowing that incpc2011=12793.6 and 
conspc2010=13500.  

b) Obtain a consistent estimate of price with the characteristics used in parts 
a). 

c) Run a regression that allows you to calculate a 95% CI with the 
characteristics used in part a).  

d) Obtain a 95% prediction interval for the individual value of the 
consumption per capita 2011. 
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5 MULTIPLE REGRESSION ANALYSIS WITH 
QUALITATIVE INFORMATION 

5.1 Introducing qualitative information in econometric models. 
Up until now, the variables that we have used in explaining the endogenous 

variable have a quantitative nature. However, there are other variables of a qualitative 
nature that can be important when explaining the behavior of the endogenous variable, 
such as sex, race, religion, nationality, geographical region etc. For example, holding all 
other factors constant, female workers are found to earn less than their male counterparts. 
This pattern may result from gender discrimination, but whatever the reason, qualitative 
variables such as gender seem to influence the regressand and clearly should be included 
in many cases among the explanatory variables, or the regressors. Qualitative factors 
often (although not always) come in the form of binary information, i.e. a person is male 
or female, is either married or not, etc. When qualitative factors come in the form of 
dichotomous information, the relevant information can be captured by defining a binary 
variable or a zero-one variable. In econometrics, binary variables used as regressors are 
commonly called dummy variables. In defining a dummy variable, we must decide which 
event is assigned the value one and which is assigned the value zero. 

In the case of gender, we can define 

1      if the person is a female
0      if the person is a male

female 
= 


 

But of course we can also define 

1      if the person is a male
0     if the person is a female

male 
= 


 

Nevertheless, it is important to remark that both variables, male and female, 
contain the same information. Using zero-one variables for capturing qualitative 
information is an arbitrary decision, but with this election the parameters have a natural 
interpretation. 

5.2 A single dummy independent variable 
Let us see how we incorporate dichotomous information into regression models. 

Consider the simple model of hourly wage determination as a function of the years of 
education (educ): 
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 1 2wage educ uβ β= + +  (5-1) 

To measure gender wage discrimination, we introduce a dummy variable for 
gender as an independent variable in the model defined above, 

 1 1 2wage female educ uβ δ β= + + +  (5-2) 

The attribute gender has two categories: male and female. The female category 
has been included in the model, while the male category, which was omitted, is the 
reference category. Model 1 is shown in Figure 5.1, taking δ1<0. The interpretation of δ1 
is the following: δ1 is the difference in hourly wage between females and males, given 
the same amount of education (and the same error disturbance u). Thus, the coefficient δ1 
determines whether there is discrimination against women or not. If δ1<0 then, for the 
same level of other factors (education, in this case), women earn less than men on average. 
Assuming that the disturbance mean is zero, if we take expectation for both categories we 
obtain: 

 
| 1 1 2

| 1 2

( | 1, )
( | 0, )

wage female

wage male

E wage female educ educ
E wage female educ educ

µ β δ β

µ β β

= = = + +

= = = +
 (5-3) 

As can be seen in (5-3), the intercept is β1  for males, and β1+δ1 for females. 
Graphically, as can be seen in Figure 5.1, there is a shift of the intercept, but the lines for 
men and women are parallel. 

 
FIGURE 5.1. Same slope, different intercept. 

In (5-2) we have included a dummy variable for female but not for male, because 
if we had included both dummies this would have been redundant. In fact, all we need is 
two intercepts, one for females and another one for males. As we have seen, if we 
introduce the female dummy variable, we have an intercept for each gender. Introducing 
two dummy variables would cause perfect multicollinearity given that female+male=1, 
which means that male is an exact linear function of female and of the intercept. Including 
dummy variables for both genders plus the intercept is the simplest example of the so-
called dummy variable trap, as we shall show later on. 

If we use male instead of female, the wage equation would be the following: 

 1 1 2wage male educ uα γ β= + + +  (5-4) 

w
ag

e

educ0

δ1

β1

β1 + δ1

β2

β2
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Nothing has changed with the new equation, except the interpretation of α1 and 
γ1: α1 is the intercept for women, which is now the reference category, and α1+γ1 is the 
intercept for men. This implies the following relationship between the coefficients: 

α1=β1+δ1 and α1+γ1=β1⇒ γ1=−δ1 
In any application, it does not matter how we choose the reference category, since 

this only affects the interpretation of the coefficients associated to the dummy variables, 
but it is important to keep track of which category is the reference category. Choosing a 
reference category is usually a matter of convenience. It would also be possible to drop 
the intercept and to include a dummy variable for each category. The equation would then 
be 

 1 1 2wage male female educ uµ ν β= + + +  (5-5) 

where the intercept is µ1 for men and ν1 for women. 
Hypothesis testing is performed as usual. In model (5-2), the null hypothesis of no 

difference between men and women is 0 1: 0H δ = , while the alternative hypothesis that 
there is discrimination against women is 1 1: 0H δ < . Therefore, in this case, we must 
apply a one sided (left) t test. 

A common specification in applied work has the dependent variable as the 
logarithm transformation ln(y) in models of this type. For example: 

 1 1 2ln( )wage female educ uβ δ β= + + +  (5-6) 

Let us see the interpretation of the coefficient of the dummy variable in a log 
model. In model (5-6), taking u=0, the wage for a female and for a male is as follows: 

 1 1 2ln( )Fwage educβ δ β= + +  (5-7) 

 1 2ln( )Mwage educβ β= +  (5-8) 

Given the same amount of education, if we subtract (5-7) from (5-8), we have 

 1ln( ) ln( )F Mwage wage δ− =  (5-9) 

Taking antilogs in (5-9) and subtracting 1 from both sides of (5-9), we 
get 

 11 1F

M

wage e
wage

δ− = −  (5-10) 

That is to say 

 1 1F M

M

wage wage e
wage

δ−
= −  (5-11) 

According to (5-11), the proportional change between the female wage and the 
male wage, for the same amount of education, is equal to 1 1eδ − . Therefore, the exact 
percentage change in hourly wage between men and women is 100 1( 1)eδ× − . As an 
approximation to this change, 100×δ1 can be used. However, if the magnitude of the 
percentage is high, then this approximation is not so accurate. 
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EXAMPLE 5.1 Is there wage discrimination against women in Spain? 
Using data from the wage structure survey of Spain for 2002 (file wage02sp), model (5-6) has 

been estimated and the following results were obtained: 
·

(0.026) (0.022) (0.0025)
ln( ) 1.731 0.307 0.0548wage   female  educ = - +  

RSS=393     R2=0.243     n=2000 
where wage is hourly wage in euros, female is a dummy variable that takes the value 1 if it is a woman, and 
educ are the years of education. (The numbers in parentheses are standard errors of the estimators.) 

To answer the question posed above, we need to test 0 1: 0H δ = against 1 1: 0H δ < . Given that 
the t statistic is equal to  -14.27, we reject the null hypothesis for α=0.01. That is to say, there is a negative 
discrimination in Spain against women in the year 2002. In fact, the percentage difference in hourly wage 
between men and women is 0.307100 ( 1) 35.9%e× − = , given the same years of education. 

EXAMPLE 5.2 Analysis of the relation between market capitalization and book value: the role of ibex35 
A researcher wants to study the relationship between market capitalization and book value in 

shares quoted on the continuous market of the Madrid stock exchange. In this market some stocks quoted 
are included in the ibex35, a selective index. The researcher also wants to know whether the stocks included 
in the ibex35 have, on average, a higher capitalization.. With this purpose in mind, the researcher formulates 
the following model: 

 1 1 2ln( ) 35 ln( )marketcap ibex bookvalue uβ δ β= + + +  (5-12) 

where 
- marktval is the capitalization value of a company, which is calculated by multiplying the price 

of the stock by the number of stocks issued. 
- bookval is the book value of a company, also referred to as the net worth of the company. The 

book value is calculated as the difference between a company's assets and its liabilities. 
- ibex35 is a dummy variable that takes the value 1 if the corporation is included in the selective 

Ibex 35. 
Using the 92 stocks quoted on 15th November 2011 which supply information on book value (file 

bolmad11), the following results were obtained: 
·

(0.243) (0.179) (0.037)
ln( ) 1.784 0.690 35 0.675ln( )marketcap   ibex  bookvalue= + +  

RSS=35.672    R2=0.893     n=92 
The marketcap/bookvalue elasticity is equal to 0.690; that is to say, if the book value increases by 

1%, then the market capitalization of the quoted stocks will increase by 0.675%.  
To test whether the stocks included in ibex35 have on average a higher capitalization implies 

testing 0 1: 0H δ =  against 1 1: 0H δ > . Given that the t statistic is (0.690/0.179)=3.85, we reject the null 
hypothesis for the usual levels of significance. On the other hand, we see that the stocks included in ibex35 
are quoted 99.4% higher than the stocks not included. The percentage is obtained as follows: 

0.690100 ( 1) 99.4%e× − = . 

In the case of β2, we can test 0 2: 0H β =  against 1 2: 0H β ≠ . Given that the t statistic is 
(0.675/0.037)=18, we reject the null hypothesis for the usual levels of significance. 

EXAMPLE 5.3 Do people living in urban areas spend more on fish than people living in rural areas? 
To see whether people living in urban areas spend more on fish than people living in rural areas, 

the following model is proposed:  
 1 1 2ln( ) ln( )fish urban inc uβ δ β= + + +  (5-13) 

where fish is expenditure on fish, urban is a dummy variable which takes the value 1  if the person lives in 
an urban area and inc is disposable income. 

Using a sample of size 40 (file demand), model (5-13) was estimated: 
·

(0.511) (0.055) (0.070)
ln( ) 6.375 0.140 1.313ln( )fish   urban  inc  = - + +  

http://www.wisegeek.com/what-is-net-worth.htm
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RSS=1.131     R2=0.904     n=40 
According to these results, people living in urban areas spend 14% more on fish than people living 

in rural areas. If we test 0 1: 0H δ =  against 1 1: 0H δ > , we find that the t statistic is (0.140/0.055)=2.55. 
Given that 0.01 0.01

37 35t t≈ =2.44, we reject the null hypothesis in favor of the alternative for the usual levels of 
significance. That is to say, there is empirical evidence that people living in urban areas spend more on fish 
than people living in rural areas. 

5.3 Multiple categories for an attribute 
In the previous section we have seen an attribute (gender) that has two categories 

(male and female). Now we are going to consider attributes with more than two categories. 
In particular, we will examine an attribute with three categories 

To measure the impact of firm size on wage, we can use a dummy variable. Let 
us suppose that firms are classified in three groups according to their size: small (up to 
49 workers), medium (from 50 to 199 workers) and large (more than 199 workers). With 
this information, we can construct three dummy variables: 

1      up to 49 workers
   

0      in other case

1      from 50 to 199 workers
0      in other case

1      more than 199 workers
   

0      in other case

small

medium

large


= 




= 



= 


 

If we want to explain hourly wages by introducing the firm size in the model, we 
must omit one of the categories. In the following model, the omitted category is small 
firms: 

 1 1 2 2wage medium large educ uβ θ θ β= + + + +  (5-14) 

The interpretation of the θj coefficients is the following: θ1 (θ2) is the difference 
in hourly wage between medium (large) firms and small firms, given the same amount of 
education (and the same error term u).  

Let us see what happens if we also include the category small in (5-14). We would 
have the model: 

 1 0 1 2 2wage small medium large educ uβ θ θ θ β= + + + + +  (5-15) 

Now, let us consider that we have a sample of six observations: the observations 
1 and 2 correspond to small firms; 3 and 4 to medium ones; and 5 and 6 to large ones. In 
this case the matrix of regressors X would have the following configuration: 
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1

2

3

4

5

6

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

educ
educ
educ
educ
educ
educ

 
 
 
 

=  
 
 
 
 

X  

As can be seen in matrix X, column 1 of this matrix is equal to the sum of columns 
2, 3 and 4. Therefore, there is perfect multicollinearity due to the so-called dummy 
variable trap. Generalizing, if an attribute has g categories, we need to include only g−1 
dummy variables in the model along with the intercept. The intercept for the reference 
category is the overall intercept in the model, and the dummy variable coefficient for a 
particular group represents the estimated difference in intercepts between that category 
and the reference category. If we include g dummy variables along with an intercept, we 
will fall into the dummy variable trap. An alternative is to include g dummy variables and 
to exclude an overall intercept. In the case we are examining, the model would be the 
following: 

 0 1 2 2wage small medium large educ uθ θ θ β= + + + +  (5-16) 

This solution is not advisable for two reasons. With this configuration of the model 
it is more difficult to test differences with respect to a reference category. Second, this 
solution only works in the case of a model with only one unique attribute. 
EXAMPLE 5.4 Does firm size influence wage determination? 

Using the sample of example 5.1 (file wage02sp), model (5-14), taking log for wage, was 
estimated: 

·
(0.027) (0.025) (0.024) (0.0025)

ln( ) 1.566 0.281 0.162 0.0480wage   medium large  educ = + + +  

RSS=406     R2=0.218     n=2000 
To answer the question above, we will not perform an individual test on θ1 or θ2. Instead we must 

jointly test whether the size of firms has a significant influence on wage. That is to say, we must test whether 
medium and large firms together have a significant influence on the determination of wage. In this case, 
the null and the alternative hypothesis, taking (5-14) as the unrestricted model, will be the following: 

0 1 2

1 0

: 0
:  is not true

H
H H

θ θ= =
 

The restricted model in this case is the following:  
 1 2ln( )wage educ uβ β= + +  (5-17) 

The estimation of this model is the following:  
·

(0.026) (0.0026)
ln( ) 1.657 0.0525wage    educ= +  

RSS=433     R2=0.166     n=2000 
Therefore, the F statistic is 

[ ] [ ]/ 433 406 / 2
/ ( ) 406 / (2000 4)

R UR

UR

RSS RSS q
F

RSS n k
− −

= = =
− −

66.4 

So, according to the value of the F statistic, we can conclude that the size of the firm has a 
significant influence on wage determination for the usual levels of significance. 
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Example 5.5 In the case of Lydia E. Pinkham, are the time dummy variables introduced significant 
individually or jointly? 

In example 3.4, we considered the case of Lydia E. Pinkham in which sales of a herbal extract 
from this company (expressed in thousands of dollars) were explained in terms of advertising expenditures 
in thousands of dollars (advexp) and last year's sales (salest-1). However, in addition to these two variables, 
the author included three time dummy variables: d1, d2 and d3. These dummy variables encompass the 
various situations which took place in the company. Thus, d1 takes 1 in the period 1907-1914 and 0 in the 
remaining periods, d2 takes 1 in the period 1915-1925 and 0 in other periods, and finally, d3 takes 1 in the 
period 1926 - 1940 and 0 in the remaining periods. Thus, the reference category is the period 1941-1960. 
The final formulation of the model was therefore the following: 

 salest=β1+β2advexpt+β3salest-1+β4d1t+β5d2t+β6d3t+ut (5-18) 
The results obtained in the regression, using file pinkham, were the following:  
·

1(96.3) (0.136) (0.0814) (89) (67) (67)
254.6 0.5345 0.6073 133.35 1 216.84 2 202.50 3t t t t t tsales advexp sales d d d-= + + - + -  

R2=0.929     n=53 
To test whether the dummy variables individually have a significant effect on sales, the null and 

alternative hypotheses are: 

0

1

0  
     1, 2,3

0
i

i

H
i

H
q
q

ìïïíï ¹ïî

: =
=

: 
 

The corresponding t statistics are the following:  

1 2 3
ˆ ˆ ˆ

133.35 216.84 202.501.50         3.22         3.02
89 67 67

t t t
q q q

- --= = = = = = −  

As can be seen, the regressor d1 is not significant for any of the usual levels of significance, 
whereas on the contrary the regressors d2 and d3 are significant for any of the usual levels. 

The interpretation of the coefficient of the regressor d2, for example, is as follows: holding fixed 
the advertising spending and given the previous year's sales, sales for one year of the period 1915-1920 are 
$ 2.684 higher than for a year of the period 1941-1960. 

To test jointly the effect of the time dummy variables, the null and alternative hypotheses are 

0 1 2 3

1 0

 
 is not true

H
H H

q q qìïïíïïî

: = = = 0
:   

and the corresponding test statistic is 
2 2

2

( ) / (0.9290 0.8770) / 3 11.47
(1 0.9290) / (53 6)(1 ) / ( )

UR R

UR

R R q
F

R n k
− −

= = =
− −− −

 

For any of the usual significance levels the null hypothesis is rejected. Therefore, the time dummy 
variables have a significant effect on sales 

5.4 Several attributes 
Now we will consider the possibility of taking into account two attributes to 

explain the determination of wage: gender and length of workday (part-time and full-
time). Let partime be a dummy variable that takes value 1 when the type of contract is 
part-time and 0 if it is full-time. In the following model, we introduce two dummy 
variables: female and partime: 

 1 1 1 2wage female partime educ uβ δ φ β= + + + +  (5-19) 

In this model, φ1 is the difference in hourly wage between those who work part-
time, given gender and the same amount of education (and also the same disturbance term 
u). 
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Each of these two attributes has a reference category, which is the omitted 
category. In this case, male is the reference category for gender and full-time for type of 
contract. If we take expectations for the four categories involved, we obtain:  

 

[ ]
[ ]

[ ]

| , 1 1 1 2

| , 1 1 2

| , 1 1 2

| ,

| , ,

| , ,

| , ,

wage female partime

wage female fulltime

wage male partime

wage male fulltime

E wage female partime educ educ

E wage female fulltime educ educ

E wage male partime educ educ

E w

µ β δ φ β

µ β δ β

µ β φ β

µ

= = + + +

= = + +

= = + +

= [ ] 1 2| , ,age male fulltime educ educβ β= +
 (5-20) 

The overall intercept in the equation reflects the effect of both reference categories, 
male and full-time, and so full-time male is the reference category. From (5-20), you can 
see the intercept for each combination of categories. 
EXAMPLE 5.6 The influence of gender and length of the workday on wage determination 

Model (5-19), taking log for wage,  was estimated by using data from the wage structure survey 
of Spain for 2006 (file wage06sp): 

·
(0.026) (0.021) (0.027) (0.0023)

ln( ) 2.006 0.233 0.087 0.0531wage   female partime  educ = - - +  

RSS=365     R2=0.235     n=2000 
According to the values of the coefficients and corresponding standard errors, it is clear that each 

one of the two dummy variables, female and partime, are statistically significant for the usual levels of 
significance. 

EXAMPLE 5.7 Trying to explain the absence from work in the company Buenosaires 
Buenosaires is a firm devoted to the manufacturing of fans, having had relatively acceptable results 

in recent years. The managers consider that these would have been better if absenteeism in the company 
were not so high. In order to analyze the factors determining absenteeism, the following model is proposed: 

 1 1 1 2 3 4absent bluecoll male age tenure wage uβ δ φ β β β= + + + + + +  (5-21) 

where bluecoll is a dummy indicating that the person is a manual worker (the reference category is white 
collar) and tenure is a continuous variable reflecting the years worked in the company.  

Using a sample of size 48 (file absent), the following equation has been estimated: 
·

(1.640) (0.669) (0.712) (0.047) (0.065) (0.007)
12.444 0.968 2.049 0.037 0.151 0.044absent  bluecoll male  age tenure  wage = + + - - -   

RSS=161.95     R2=0.760     n=48 
Next, we will look at whether bluecoll is significant. Testing 0 1: 0H δ =  against 1 1: 0H δ ≠ , the 

t statistic is (0.968/0.669)=1.45. As 0.10/2
40t =1.68, we fail to reject the null hypothesis for α=0.10. And so 

there is no empirical evidence to state that absenteeism amongst blue collar workers is different from  white 
collar workers. But if we test 0 1: 0H δ =  against 1 1: 0H δ > , as 0.10

40t =1.30 for α=0.10, then we cannot 
reject that absenteeism amongst blue collar workers is greater than  amongst white collar workers. 

On the contrary, in the case of the male dummy, testing 0 1: 0H ϕ =  against 1 1: 0H ϕ ≠ , given that 
the t statistic is (2.049/0.712)=2.88 and 0.01/2

40t =2.70, we reject that absenteeism is equal in men and women 
for the usual levels of significance. 

EXAMPLE 5.8 Size of firm and gender in determining wage 
In order to know whether the size of the firm and gender jointly are two relevant factors in 

determining wage, the following model is formulated: 
 1 1 1 2 2ln( )wage female medium large educ uβ δ θ θ β= + + + + +  (5-22) 

In this case, we must perform a joint test where the null and the alternative hypotheses are  
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0 1 1 2

1 0

: 0
:  is not true

H
H H

δ θ θ= = =
 

In this case, the restricted model is model (5-17) which was estimated in example 5.4 (file 
wage02sp). The estimation of the unrestricted model is the following:  

·
(0.026) (0.021) (0.023) (0.023) (0.0024)

ln( ) 1.639 0.327 0.308 0.168 0.0499wage   female medium large  educ = - + + +  

RSS=361     R2=0.305     n=2000 
The F statistic is 

[ ] [ ]/ 433 361 / 3
/ ( ) 361/ (2000 5)

R UR

UR

RSS RSS q
F

RSS n k
− −

= = =
− −

133 

Therefore, according to the value of F, we can conclude that the size of the firm and gender jointly 
have a significant influence in wage determination. 

5.5 Interactions involving dummy variables. 

5.5.1 Interactions between two dummy variables 
To allow for the possibility of an interaction between gender and length of the 

workday on wage determination, we can add an interaction term between female and 
partime in model (5-19), with the model to estimate being the following: 

1 1 1 1 2wage female partime female partime educ uβ δ φ ϕ β= + + + × + +
 (5-23) 

This allows working time to depend on gender and vice versa.  
EXAMPLE 5.9 Is the interaction between females and part-time work significant? 

Model (5-23), taking log for wage, was estimated by using data from the wage structure survey of 
Spain for 2006 (file wage06sp): 

·
(0.026) (0.022) (0.047) (0.0024)(0.058)

ln( ) 2.007 0.259 0.198 0.167 0.0538wage   female partime female partime  educ = - - + ´ +  

 RSS=363     R2=0.238     n=2000 
To answer the question posed, we have to test 0 1: 0H ϕ =  against 0 1: 0H ϕ ≠ . Given that the t 

statistic is (0.167/0.058)=2.89 and taking into account that 0.01/2
60t =2.66, we reject the null hypothesis in 

favor of the alternative hypothesis. Therefore, there is empirical evidence that the interaction between 
females and part-time work is statistically significant. 

EXAMPLE 5.10 Do small firms discriminate against women more or less than larger firms? 
To answer this question, we formulate the following model: 

 1 1 1 2

1 2 2

ln( )wage female medium large
female medium female large educ u

β δ θ θ
ϕ ϕ β

= + + +
+ × + × + +

 (5-24) 

Using the sample of example 5.1 (file wage02sp), model (5-24) was estimated: 
·

(0.027) (0.034) (0.028) (0.027)

(0.050) (0.051) (0.0024)

ln( ) 1.624 0.262 0.361 0.179

0.159 0.043 0.0497

wage   female medium large

female medium female large  educ 

= - + +

- ´ - ´ +
 

RSS=359     R2=0.308     n=2000 
If in (5-24) the parameters ϕ1 and ϕ2 are equal to 0, this will imply that in the equation for wage 

determination, there will be non interaction between gender and firm size. Thus to answer the above 
question, we take (5-24) as the unrestricted model. The null and the alternative hypothesis will be the 
following: 
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0 1 2

1 0

: 0
:  is not true

H
H H

ϕ ϕ= =
 

In this case, the restricted model is therefore model (5-22) estimated in example 5.7. The F statistic 
takes the value 

[ ] [ ]/ 361 359 / 2
/ ( ) 359 / (2000 7)

R UR

UR

RSS RSS q
F

RSS n k
− −

= = =
− −

5.55 

For α=0.01, we find that 0.01 0.01
2,1993 2,60 4.98F F =; . As F>5.61, we reject H0 in favor of H1. As H0 has 

been rejected for α=0.01, it will also be rejected for levels of 5% and 10%. Therefore, the usual levels of 
significance, the interaction between gender and firm size is relevant for wage determination. 

5.5.2 Interactions between a dummy variable and a quantitative variable 
So far, in the examples for wage determination a dummy variable has been used 

to shift the intercept or to study its interaction with another dummy variable, while 
keeping the slope of educ constant. However, one can also use dummy variables to shift 
the slopes by letting them interact with any continuous explanatory variables. For 
example, in the following model the female dummy variable interacts with the continuous 
variable educ: 

 1 2 1wage educ female educ uβ β δ= + + × +  (5-25) 

As can be seen in figure 5.2, the intercept is the same for men and women in this 
model, but the slope is greater in men than in women because δ1 is negative.  

In model (5-25), the returns to an extra year of education depend upon the gender 
of the individual. In fact, 

 2 1

2

  for women
   for men         

wage
educ

β δ
β

+∂
= ∂ 

 (5-26) 

 
FIGURE 5.2. Different slope, same intercept. 

EXAMPLE 5.11 Is the return to education for males greater than for females? 
Using the sample of example 5.1 (file wage02sp), model (5-25) was estimated by taking log for 

wage:  

w
ag

e

educ

β2+ δ1

0

β1

β2
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·
(0.025) (0.0026) (0.0021)

ln( ) 1.640 0.0632 0.0274wage    educ educ female = + - ´  

RSS=400     R2=0.229     n=2000 
In this case, we need to test 0 1: 0H δ =  against 1 1: 0H δ < . Given that the t statistic is (-

0.0274/0.0021) =-12.81, we reject the null hypothesis in favor of the alternative hypothesis for any level of 
significance. That is to say, there is empirical evidence that the return for an additional year of education is 
greater for men than for women. 

5.6 Testing structural changes 
So far we have tested hypotheses in which one parameter, or a subset of 

parameters of the model, is different for two groups (women and men, for example). But 
sometimes we wish to test the null hypothesis that two groups have the same population 
regression function, against the alternative that it is not the same. In other words, we want 
to test whether the same equation is valid for the two groups. There are two procedures 
for this: using dummy variables and running separate regressions through the Chow test. 

5.6.1 Using dummy variables 
In this procedure, testing for differences across groups consists in performing a 

joint significance test of the dummy variable, which distinguishes between the two groups 
and its interactions with all other independent variables. We therefore estimate the model 
with (unrestricted model) and without (restricted model) the dummy variable and all the 
interactions. 

From the estimation of both equations we form the F statistic, either through the 
RSS or from the R2. In the following model for the determination of wages, the intercept 
and the slope are different for males and females: 

 1 1 2 2wage female educ female educ uβ δ β δ= + + + × +  (5-27) 

The population regression function corresponding to this model is represented in 
figure 5.3. As can be seen, if female=1, we obtain  

 1 1 2 2( ) ( )wage educ uβ δ β δ= + + + +  (5-28) 

For women the intercept is 1 1β δ+ , and the slope 2 2β δ+ . For female=0, we obtain 
equation (5-1). In this case, for men the intercept is 1β , and the slope 2β . Therefore, δ1 
measures the difference in intercepts between men and women and, δ2 measures the 
difference in the return to education between males and females. Figure 5.3 shows a lower 
intercept and a lower slope for women than for men. This means that women earn less 
than men at all levels of education, and the gap increases as educ gets larger; that is to 
say, an additional year of education shows a lower return for women than for men.  

Estimating (5-27) is equivalent to estimating two wage equations separately, one 
for men and another for women. The only difference is that (5-27) imposes the same 
variance across the two groups, whereas separate regressions do not. This set-up is ideal, 
as we will see later on, for testing the equality of slopes, equality of intercepts, and 
equality of both intercepts and slopes across groups. 
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FIGURE 5.3. Different slope, different intercept. 

EXAMPLE 5.12 Is the wage equation valid for both men and women? 
If parameters δ1 and δ2 are equal to 0 in model (5-27), this will imply that the equation for wage 

determination is the same for men and women. In order to answer the question posed, we take (5-27), as 
the unrestricted model but express wage in logs. The null and the alternative hypothesis will be the 
following: 

0 1 2

1 0

: 0
:  is not true

H
H H

δ δ= =
 

Therefore, the restricted model is model (5-17). Using the same sample as in example 5.1 (file 
wage02sp), we have obtained the following estimation of models (5-27) and (5-17): 

·
(0.030) (0.0546) (0.0030) (0.0054)

ln( ) 1.739 0.3319 0.0539 0.0027wage   female  educ educ female = - + - ´  

RSS=393      R2=0.243     n=2000 
·

(0.026) (0.0026)
ln( ) 1.657 0.0525wage    educ= +  

RSS=433     R2=0.166     n=2000 
The F statistic takes the value 

[ ] [ ]/ 433 393 / 2
/ ( ) 393 / (2000 4)

R UR

UR

RSS RSS q
F

RSS n k
− −

= = =
− −

102 

It is clear that for any level of significance, the equations for men and women are different. 
When we tested in example 5.1 whether there was discrimination in Spain against women 

( 0 1: 0H δ = against 1 1: 0H δ < ), it was assumed that the slope of educ (model (5-6)) is the same for men 
and women. Now it is also possible to use model (5-27) to test the same null hypothesis, but assuming a 
different slope. Given that the t statistic is (-0.3319/0.0546)=-6.06, we reject the null hypothesis by using 
this more general model than the one in example 5.1. 

In example 5.11 it was tested whether the coefficient δ2 in model (5-25), taking log for wage, was 
0, assuming that the intercept is the same for males and females. Now, if we take (5-27), taking log for 
wage,  as the unrestricted model, we can test the same null hypothesis, but assuming that the intercept is 
different for males and females. Given that the t statistic is (0.0027/0.0054)=0.49, we cannot reject the null 
hypothesis which states that there is no interaction between gender and education. 

EXAMPLE 5.13 Would urban consumers have the same pattern of behavior as rural consumers regarding 
expenditure on fish? 

To answer this question, we formulate the following model which is taken as the unrestricted 
model: 

w
ag
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educ

β2+ δ2

0

β1

β1 + δ1

β2
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 1 1 2 2ln( ) ln( ) ln( )fish urban inc inc urban uβ δ β δ= + + + × +  (5-29) 

The null and the alternative hypothesis will be the following: 

0 1 2

1 0

: 0
:  is not true

H
H H

δ δ= =
 

The restricted model corresponding to this H0 is  
 1 2ln( ) ln( )fish inc uβ β= + +  (5-30) 

Using the sample of example 5.3 (file demand), models (5-29) and (5-30) were estimated: 
·

(0.627) (1.095) (0.087) (0.152)
ln( ) 6.551 0.678 1.337 ln( ) 0.075ln( )fish   urban  inc   inc urban= - + + - ´  

RSS=1.123      R2=0.904     n=40 
·

(0.542) (0.075)
ln( ) 6.224 1.302ln( )fish     inc  = - +  

RSS=1.325     R2=0.887     n=40 
The F statistic takes the value 

[ ] [ ]/ 1.325 1.123 / 2
/ ( ) 1.123 / (40 4)

R UR

UR

RSS RSS q
F

RSS n k
− −

= = =
− −

3.24 

If we look up in the F table for 2 df in the numerator and 35 df in the denominator for α=0.10, we 
find 0.10 0.10

2,36 2,35 2.46F F; = . As F>2.46 we reject 0H . However, as 0.05 0.05
2,36 2,35 3.27F F; = , we fail to reject 0H  

in favour of H1 for α=0.05 and, therefore, for α=0.01. Conclusion: there is no strong evidence that families 
living in rural areas have a different pattern of fish consumption than families living in rural areas.  

Example 5.14 Has the productive structure of Spanish regions changed? 
The question to be answered is specifically the following: Did the productive structure of Spanish 

regions change between 1995 and 2008? The problem posed is a problem of structural stability. To specify 
the model to be taken as a reference in the test, let us  define the dummy y2008, which takes the value 1 if 
the year is 2008 and 0 if the year is 1995. 

The reference model is a Cobb-Douglas model, which introduces additional parameters to collect 
the structural changes that may have occurred. Its expression is: 

 1 1 1 2 2 2ln( ) ln( ) ln( ) 2008 2008 ln( ) 2008 ln( )q k l y y k y l uγ α β γ α β= + + + + × + × +
 (5-31) 

It is easily seen, according to the definition of the dummy y2008, that the elasticities 
production/capital are different in the periods 1995 and 2008. Specifically, they take the following values: 

(1995) 1 (2008) 1 2
ln( ) ln( )          + 
ln( ) ln( )Q K Q K

Q Q
K K

ε α ε α α/ /

∂ ∂
= = = =

∂ ∂
 

In the case that α2 is equal to 0, then the elasticity of production/capital is the same in both periods. 
Similarly, the production/labor elasticities for the two periods are given by 

(1995) 1 (2008) 1 2
ln( ) ln( )          + 
ln( ) ln( )Q K Q K

L L
K K

ε β ε β β/ /

∂ ∂
= = = =

∂ ∂
 

The intercept in the Cobb-Douglas is a parameter that measures efficiency. In model (5-31), the 
possibility that the efficiency parameter (PEF) is different in the two periods is considered. Thus 

1 1 2(1995)         (2008) + PEF PEFγ γ γ= =  

If the parameters α1, β1 and γ1 are zero in model (5-31), the production function is the same in both 
periods. Therefore, in testing structural stability of the production function, the null and alternative 
hypotheses are: 

 0 2 2 2

1 0

   
 is not true

H
H H

γ α β: = =
: 

 (5-32) 

Under the null hypothesis, the restrictions given in (5-32) lead to the following restricted model: 
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 1 1 1ln( ) ln( ) ln( )q k l uγ α β= + + +  (5-33) 

The file prodsp contains information for each of the Spanish regions in 1995 and 2008 on gross 
value added in millions of euros (gdp), occupation in thousands of jobs (labor), and productive capital in 
millions of euros (captot). You can also find the dummy y2008 in that file. 

The results of the unrestricted regression model (5-31) are shown below. It is evident that we 
cannot reject the null hypothesis that each of the coefficients α1, β1 and γ1, taken individually, are 0, since 
none of the t statistics reaches 0.1 in absolute value. 

·
(0.916) (0.185) (0.185)

(2.32) (0.419) (0.418)

ln( ) 0.0559 0.6743ln( ) 0.3291ln( )

0.1088 20108 0.0154 2008 ln( ) 0.0094 2008 ln( )

gva captot labor

y y captot y labor

+ +

- + ´ - ´

=
 

R2=0.99394     n=34 
The results of the restricted model (5-33) are the following: 

·
(0.200) (0.036) (0.042)

ln( ) 0.0690 0.6959ln( ) 0.311ln( )gva captot labor+ += −  

R2=0.99392     n=34 
As can be seen, the R2 of the two models are virtually identical because they differ only from the 

fifth decimal. It is not surprising, therefore, that the F statistic for testing the null hypothesis (5-32) takes a 
value close to 0: 

2 2

2

( ) / (0.99394 0.99392) / 3 0.0308
(1 0.99394) / (34 6)(1 ) / ( )

UR R

UR

R R q
F

R n k
− −

= = =
− −− −

 

Thus, the alternative hypothesis that there is structural change in the productive economy of the 
Spanish regions between 1995 and 2008 is rejected for any significance level. 

5.6.2 Using separate regressions: The Chow test 
This test was introduced by the econometrician Chow (1960). He considered the 

problem of testing the equality of two sets of regression coefficients. In the Chow test, 
the restricted model is the same as in the case of using dummy variables to distinguish 
between groups. The unrestricted model, instead of distinguishing the behaviour of the 
two groups by using dummy variables, consists simply of separate regressions. Thus, in 
the wage determination example, the unrestricted model consists of two equations: 

 11 21

12 22

:     
:         

female wage educ u
male wage educ u

β β
β β

= + +
= + +

 (5-34) 

If we estimate both equations by OLS, we can show that the RSS of the unrestricted 
model, RSSUR, is equal to the sum of the RSS obtained from the estimates for women, 
RSS1, and for men, RSS2. That is to say, 

RSSUR=RSS1+RSS2 
The null hypothesis states that the parameters of the two equations in (5-34) are 

equal. Therefore 

11 12
0

21 22

1 0

:

: No  

H

H H

β β
β β

=
 =  

By applying the null hypothesis to model (5-34), you get model (5-17), which is 
the restricted model. The estimation of this model for the whole sample is usually called 
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the pooled (P) regression. Thus, we will consider that the RSSR and RSSP are equivalent 
expressions.  

Therefore, the F statistic will be the following: 

 
( )

[ ] [ ]
1 2

1 2

/
/ 2

PRSS RSS RSS k
F

RSS RSS n k
− +  =
+ −

 (5-35) 

It is important to remark that, under the null hypothesis, the error variances for the 
groups must be equal. Note that we have k restrictions: the slope coefficients (interactions) 
plus the intercept. Note also that in the unrestricted model we estimate two different 
intercepts and two different slope coefficients, and so the df of the model are n−2k.  

One important limitation of the Chow test is that under the null hypothesis there 
are no differences at all between the groups. In most cases, it is more interesting to allow 
partial differences between both groups as we have done using dummy variables. 

The Chow test can be generalized to more than two groups in a natural way. From 
a practical point of view, to run separate regressions for each group to perform the test is 
probably easier than using dummy variables.  

In the case of three groups, the F statistic in the Chow test will be the following:  

 
[ ]1 2 3

1 2 3

( ) / 2
( ) / ( 3 )

PRSS RSS RSS RSS k
F

RSS RSS RSS n k
− + + ×

=
+ + −

 (5-36) 

Note that, as a general rule, the number of the df of the numerator is equal to the 
(number of groups-1)×k, while the number of the df of the denominator is equal to n 
minus (number of groups)×k. 
EXAMPLE 5.15 Another way to approach the question of wage determination by gender 

Using the same sample as in example 5.1 (file wage02sp), we have obtained the estimation of the 
equations in (5-34), taking log for wage, for men and women, which taken together gives the estimation of 
the unrestricted model: 

Female equation ·
(0.042) (0.0041)

ln( ) 1.407 0.0566wage    educ= +  

RSS=104     R2=0.236     n=617 

Male equation ·
(0.031) (0.0032)

ln( ) 1.739 0.0539wage    educ= +  

RSS=289     R2=0.175     n=1383 
The restricted model, estimated in example 5.4, has the same configuration as the equations in 

(5-34) but in this case refers to the whole sample. Therefore, it is the pooled regression corresponding to 
the restricted model. The F statistic takes the value 

[ ] [ ]( ) / 433 (104 289) / 2
) / ( 2 ) (104 289) / (2000 2 2)

P F M

F M

RSS RSS RSS k
F

RSS RSS n k
− + − +

= = =
+ − + − ×

102 

The F statistic must be, and is, the same as in example 5.12. The conclusions are therefore the 
same.  

EXAMPLE 5.16 Is the model of wage determination the same for different firm sizes? 
In other examples the intercept, or the slope on education, was different for three different firm 

sizes (small, medium and large). Now we shall consider a completely different equation for each firm size. 
Therefore, the unrestricted model will be composed by three equations: 
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11 11 21

12 12 22

13 13 23

: ln( )
: ln( )

: ln( )

samall wage female edu u
medium wage female edu u
large wage female edu u

β δ β
β δ β

β δ β

= + + +
= + + +

= + + +
 (5-37) 

The null and the alternative hypothesis will be the following: 

11 12 13

0 11 12 13

21 22 23

1 0

:

: No  

H

H H

β β β
δ δ δ
β β β

= =
 = =
 = =

 

Given this null hypothesis, the restricted model is model (5-2).  
The estimations of the three equations of (5-37), by using file wage02sp, are the following: 

small ·
(0.034) (0.031) (0.0038)

ln( ) 1.706 0.249 0.0396wage   female  educ = - +  

RSS=121     R2=0.160     n=801 

medium ·
(0.051) (0.039) (0.0046)

ln( ) 1.934 0.422 0.0548wage   female  educ = - +  

RSS =123     R2=0.302     n=590 

large ·
(0.046) (0.039) (0.0044)

ln( ) 1.749 0.303 0.0554wage   female  educ = - +  

RSS =114     R2=0.273     n=609 
The pooled regression has been estimated in example 5.1. The F statistic takes the value 

[ ]

[ ]

( ) / 2
( ) / ( 3 )

393 (121 123 114) / 6
32.4

(121 123 114) / (2000 3 3)

P S M L

S M L

RSS RSS RSS RSS k
F

RSS RSS RSS n k
− + + ×

=
+ + −

− + +
= =

+ + − ×

 

For any level of significance, we reject that the equations for wage determination are the same for 
different firm sizes. 

EXAMPLE 5.17 Is the Pinkham model valid for the four periods? 
In example 5.5, we introduced time dummy variables and we tested whether the intercept was 

different for each period. Now, we are going to test whether the whole model is valid for the four periods 
considered. Therefore, the unrestricted model will be composed by four equations: 

 

11 21 31 1

12 22 32 1

13 23 33 1

14 24 34

1907-1914        
1915-1925        
1926-1940        
1941-1960       

t t t t

t t t t

t t t t

t t

sales advexp sales u
sales advexp sales u
sales advexp sales u
sales advexp

β β β
β β β
β β β
β β β

−

−

−

= + + +

= + + +

= + + +

= + + 1 t tsales u− +

 (5-38) 

The null and the alternative hypothesis will be the following: 

11 12 13 14

0 21 22 23 24

31 32 33 34

1 0

:

: No  

H

H H

β β β β
β β β β
β β β β

= = =
 = = =
 = = =

 

Given this null hypothesis, the restricted model is the following model: 
 1 2 3 1     t t t tsales advexp sales uβ β β −= + + +  (5-39) 
The estimations of the four equations of (5-38) are the following: 

·
1(603) (1.025) (0.425)

1907-1914     64.84 0.9149 0.4630       36017    7   t tsales advexp sales SSR n-= + + = =
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·
1(190) (0.557) (0.300)

1915-1925     221.5 0.1279 0.9319        400605    11t tsales advexp sales SSR n-= + + = =
 

·
1(112) (0.115) (0.0827)

1926-1940     446.8 0.4638 0.4445        201614   15t tsales advexp sales SSR n-= + + = =
 

·
1(134) (0.241) (0.111)

1941-1960     182.4 1.6753 0.3042      187332  20t tsales advexp sales SSR n-= - + + = =  

The pooled regression, estimated in example 3.4, is the following: 
·

1(95.7) (0.156) (0.0915)
138.7 0.3288 0.7593           2527215  53t tsales advexp sales SSR n-= + + = =  

 The F statistic takes the value 

[ ]

[ ]

1 2 3 4

1 2 3 4

( ) / 3
( ) / ( 4 )

2527215 (36017 400605 201614 187332) / 9
9.16

(36017 400605 201614 187332) / (53 4 3)

PSSR SSR SSR SSR SSR k
F

SSR SSR SSR SSR n k
− + + + ×

=
+ + + −

− + + +
= =

+ + + − ×

 

For any level of significance, we reject that the model (5-39) is the same for the four periods 
considered. 

Exercises 

Exercise 5.1 Answer the following questions for a model with explanatory dummy 
variables: 

a) What is the interpretation of the dummy coefficients?  
b) Why are not included in the model so many dummy variables as categories 

there are? 

Exercise 5.2 Using a sample of 560 families, the following estimations of demand for 
rental are obtained: 

(0.11)  (0.017) (0.026)
ˆ 4.17 0.247 0.960i i iq p y= − +  

R2=0.371     n=560 

(0.13)  (0.030) (0.031) (0.120)
ˆ 5.27 0.221 0.920 0.341i i i i iq p y d y= − + +  

R2=0.380 
where qi is the log of expenditure on rental housing of the ith family, pi is the logarithm of 
rent per m2 in the living area of the ith family, yi is the log of household disposable income 
of the ith family and di is a dummy variable that takes value one if the family lives in an 
urban area and zero in a rural area. 

(The numbers in parentheses are standard errors of the estimators.) 
a) Test the hypothesis that the elasticity of expenditure on rental housing with 

respect to income is 1, in the first fitted model. 
b) Test whether the interaction between the dummy variable and income is 

significant. Is there a significant difference in the housing expenditure 
elasticity between urban and rural areas? Justify your answer. 

Exercise 5.3 In a linear regression model with dummy variables, answer the following 
questions: 

a) The meaning and interpretation of the coefficients of dummy variables in 
models with endogenous variable in logs. 
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b) Express how a model is affected when a dummy variable is introduced in 
a multiplicative way with respect to a quantitative variable. 

Exercise 5.4 In the context of a multiple linear regression model,  
a) What is a dummy variable? Give an example of an econometric model 

with dummy variables. Interpret the coefficients.  
b) When is there perfect multicollinearity in a model with dummy variables? 

Exercise 5.5 The following estimation is obtained using data for workers of a company:  
· 500 50 200 00i i i iwage tenure college 1 male= + + +  

where wage is the wage in euros per month, tenure is the number of years in the company, 
college is a dummy variable that takes value 1 if the worker is graduated from college 
and 0 otherwise and male is a dummy variable which takes value 1 if the worker is male 
and 0 otherwise. 

a) What is the predicted wage for a male worker with six years of tenure and 
college education? 

b) Assuming that all working women have college education and none of the 
male workers do, write a hypothetical matrix of regressors (X) for six 
observations. In this case, would you have any problem in the estimation 
of this model? Explain it. 

c) Formulate a new model that allows to establish whether there are wage 
differentials between workers with primary, secondary and college 
education.  

Exercise 5.6 Consider the following linear regression model: 
 1 1 2 2i i i i iy x d d uα β γ γ= + + + +  (1) 
where y is the monthly salary of a teacher, x is the number of years of teaching experience 
y d1 y d2 are two dummy variables taking the following values:  

1

1      if the teacher is male
0      otherwiseid 

= 


        2

1      if the teacher is white
0      otherwiseid 

= 


 

a) What is the reference category in the model? 
b) Interpret γ1 and γ2. What is the expected salary for each of the possible 

categories?  
c) To improve the explanatory power of the model, the following alternative 

specification was considered:  

 1 1 2 2 3 1 2( )i i i i i i iy x d d d d uα β γ γ γ= + + + + +  (2) 
d) What is the meaning of the term 1 2( )i id d ? Interpret γ3. 
e) What is the expected salary for each of the possible categories in model 

(2)? 

Exercise 5.7 Using a sample of 36 observations, the following results are obtained: 

1 2 3(0.12) (0.34) (3.35) (0.07)
ˆ 1.10 0.96 4.56 0.34t t t ty x x x= − − +  

( )2 2

1 1

ˆ ˆ109.24 20.22
n n

t t
t t

y y u
= =

− = =∑ ∑  
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(The numbers in parentheses are standard errors of the estimators.) 
a) Test the individual significance of the coefficient associated with x2. 
b) Calculate the coefficient of determination, R2, and explain its meaning. 
c) Test the joint significance of the model. 
d) Two additional regressions, with the same specification, were made for the 

two categories A and B included in the sample (n1=21 y n2=15). In these 
estimates the following RSS were obtained: 11.09 y 2.17, respectively. 
Test if the behavior of the endogenous variable is the same in the two 
categories. 

Exercise 5.8 To explain the time devoted to sport (sport), the following model was 
formulated 

 1 1 1 2sport female smoker age u= b d j b+ + + +  (1) 
where sport is the minutes spent on sports a day, on average; female and smoker are 
dummy variables taking the value 1 if the person is a woman or smoker of at least five 
cigarettes per day, respectively. 

a) Interpret the meaning of δ1, 1j  and β2.  
b) What is the expected time spent on sports activities for all possible 

categories? 
c) To improve the explanatory power of the model, the following alternative 

specification was considered: 

 
1 1 1 1

2 2 2

depor mujer fumador mujer fumador
mujer edad fumador edad edad u
= b d j g

d j b
+ + + ´

+ ´ + ´ + +
 (2) 

In  model (2), what is the meaning of γ1? What is the meaning of δ2 and 
2j ? 

d) What are the possible marginal effects of sport with respect to age in the 
model (2)? Describe them. 

Exercise 5.9 Using information for Spanish regions in 1995 and 2000, several production 
functions were estimated.  

For the whole of the two periods, the following results were obtained: 
·ln( ) 5.72 0.26ln( ) 0.75ln( ) 1.14 0.11 ln( ) 0.05 ln( )q k l f f k f l= + + - + ´ - ´  (1) 

2 20.9594     0.9510     0.9380        34R R RSS n= = = =  

 
·ln( ) 3.91 0.45ln( ) 0.60( )q k l= + +  (2) 

2 20.9567     0.9525     1.0007R R RSS= = =  
Moreover, the following models were estimated separately for each of the years:  

1995 ·ln( ) 5.72 0.26ln( ) 0.75q k l= + +  (3) 
2 20.9527     0.9459    =0.6052R R RSS= =  

2000 ·ln( ) 4.58 0.37 ln( ) 0.70q k l= + +  (4) 
2 20.9629     0.9555     =0.3331R R RSS= =  
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where q is output, k is capital, l is labor and f is a dummy variable that takes the value 1 
for 1995 data and 0 for 2000. 

a) Test whether there is structural change between 1995 and 2000.  
b) Compare the results of estimations (3) and (4) with estimation (1). 
c) Test the overall significance of model (1). 

Exercise 5.10 With a sample of 300 service sector firms, the following cost function was 
estimated: 

·
(0.025)

0.847 0.899     901.074     300i icost   qty  RSS n= + = =  

where qtyi is the quantity produced. 
The 300 firms are distributed in three big areas (100 in each one). The following 

results were obtained: 

Area 1: · 2

(0.038)
ˆ1.053 0.876              0.457i icost     qty    s= + =  

Area 2: · 2

(0.096)
ˆ3.279 0.835              3.154i icost    qty    s= + =  

Area 3: · 2

(0.10)
ˆ5.279 0.984              4.255i icost    qty    s= + =  

a) Calculate an unbiased estimation of 2σ  in the cost function for the 
sample of 300 firms. 

b) Is the same cost function valid for the three areas?  

Exercise 5.11 To study spending on magazines (mag), the following models have been 
formulated:  
 1 2 3 4ln( ) ln( )mag inc age male uβ β β β= + + + +  (1) 

 1 2 3 4 5 6ln( ) ln( )mag inc age male prim sec uβ β β β β β= + + + + + +  (2) 
where inc is disposable income, age is age in years, male is a dummy variable that takes 
the value 1 if he is male, prim and sec are dummy variables that take the value 1 when 
the individual has reached, at most, primary and secondary level respectively.  

With a sample of 100 observations, the following results have been obtained  
·

(0.124) (0040) (0.001) (0.022)
ln( ) 1.27 0.756ln( ) 0.031 0.017i i i imag inc age male= + + -  

RSS=1.1575     R2=0.9286 
·

(0.020) (0.007) (0.0002) (0.003) (0.004) (0.005)
ln( ) 1.26 0.811ln( ) 0.030 0.003 0.250 0.108i i i i i imag inc age male prim sec= + + + - +  

RSS=0.0306     R2=0.9981 
a) Is education a relevant factor to explain spending on magazines? What is 

the reference category for education?  
b) In the first model, is spending on magazines higher for men than for 

women? Justify your answer.  
c) Interpret the coefficient on the male variable in the second model. Is 

spending on magazines higher for men than for women? Compare with the 
result obtained in section a). 
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Exercise 5.12 Let fruit be the expenditure on fruit expressed in euros over a year carried 
out by a household and let r1, r2, r3, and r4 be dichotomous variables which reflect the 
four regions of a country. 

a) If you regress fruit only on r1, r2, r3, and r4 without an intercept, what is 
the interpretation of the coefficients? 

b) If you regress fruit only on r1, r2, r3, and r4 with an intercept, what would 
happen? Why? 

c) If you regress fruit only on r2, r3, and r4 without an intercept, what is the 
interpretation of the coefficients? 

d) If you regress fruit only on r1- r2, r2, r4-r3, and r4 without an intercept, what 
is the interpretation of the coefficients? 

Exercise 5.13 Consider the following model 

1 1 2wage female educ uβ δ β= + + +  
Now, we are going to consider three possibilities of defining the female dummy 

variable. 

1) 
1   for female
0   for male

female 
= 


 2)  

2   for female
1   for male

female 
= 


  3)  

2   for female
0   for male

female 
= 


 

a) Interpret the dummy variable coefficient for each definition. 
b)  Is one dummy variable definition preferable to another? Justify the 

answer. 

Exercise 5.14 In the following regression model: 

1 1wage female uβ δ= + +  
where female is a dummy variable, taking value 1 for female and value 0 for a male. 

Prove that applying the OLS formulas for simple regression you obtain that  

1̂ Mwageβ =  

1̂ F Mwage wageδ = −  
where F indicates female and M male. 

In order to obtain a solution, consider that in the sample there are n1 females and 
n2 males: the total sample is n= n1+n2. 

Exercise 5.15 The data of this exercise were obtained from a controlled marketing 
experiment in stores in Paris on coffee expenditure, as reported in A. C. Bemmaor and D. 
Mouchoux, “Measuring the Short-Term Effect of In-Store Promotion and Retail 
Advertising on Brand Sales: A Factorial Experiment’, Journal of Marketing Research, 28 
(1991), 202–14. In this experiment, the following model has been formulated to explain 
the quantity sold of coffee per week: 

1 1 2 2ln( ) ln( ) ln( )coffqty advert coffpric advert coffpric uβ δ β δ= + + + × +  
where coffpric takes three values: 1, for the usual price, 0.95 and 0.85; advert is a dummy 
variable that takes value 1 if there is advertising in this week and 0 if there is not. The 
experiment lasted for 18 weeks. The original model and three other models were 
estimated, using file coffee2: 
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1)
·

(0.04) (0.099) (0.450) (0.883)

2

ln( ) 5.85 0.2565 3.9760ln( ) 1.069 ln( )

   0.9468      18    

i i i i icoffqty advert coffpric advert coffpric

R n

= + - - ´

= =
 

2) 
·

(0.04) (0.057) (0.393)

2

ln( ) 5.83 0.3559 4.2539ln( )

0.9412    18    

i i icoffqty advert coffpric

R n

= + -

= =
 

3)
 
·

(0.04) (0.513) (0.582)

2

ln( ) 5.88 3.6939ln( ) 2.9575 ln( )

       0.9214    18    

i i i icoffqty coffpric advert coffpric

R n

= - - ´

= =
 

4) 
·

(0.07) (0.674)

2

ln( ) 5.89 5.1727 ln( )

    0.7863     18    

icoffqty coffpric

R n

= -

= =
 

a) In model (2), what is the interpretation of the coefficient on advert? 
b)  In model (3), what is the interpretation of the coefficient on 

advert×ln(coffpric?  
c) In model (2), does the coefficient on advert have a significant positive 

effect at 5% and at 1%? 
d) Is model (4) valid for weeks with advertising and for weeks without 

advertising? 
e) In model (1), is the intercept the same for weeks with advertising and for 

weeks without advertising?  
f) In model (3), is the coffee demand/price elasticity different for weeks with 

advertising and for weeks without advertising? 
g) In model (4), is the coffee demand/price elasticity smaller than -4? 

Exercise 5.16 (Continuation of exercise 4.39). Using file timuse03, the following models 
have been estimated: 

 
·

(23) (1.497) (0.308) (0.023)

2

132 2.787 1.847 0.2337

0.142    1000    

i i i ihouswork educ age paidwork

R n

= + + −

= =
 (1) 

·
(22.29) (1.356) (0.279) (0.021) (2.16)

2

3.02 3.641 1.775 0.1568 32.11

0.298    1000    

i i i i ihouswork educ age paidwork female

R n

= − + + − +

= =
 (2) 

·
(35.18) (2.352) (0.502) (0.032) (8.15)

(0.546) (0.112) (0.009)

2

8.04 4.847 1.333 0.0871 32.75

0.1650 0.1019 0.02625

0.306    10

i i i i i

i i i i i i

houswork educ age paidwork female

educ female age female paidwork female

R n

= − + + − +

− × + × − ×

= = 00    

 (3) 

a) In model (1), is there a statistically significant tradeoff between time 
devoted to paid work and time devoted to housework?  

b) All other factors being equal and taking as a reference model (2), is there 
evidence that women devote more time to housework than men?  

c) Compare the R2 of models (1) and (2). What is your conclusion?  
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d) In model (3), what is the marginal effect of time devoted to housework 
with respect to time devoted to paid work? 

e) Is interaction between paidwork and gender significant? 
f) Are the interactions between gender and the quantitative variables of the 

model jointly significant? 

Exercise 5.17 Using data from Bolsa de Madrid (Madrid Stock Exchange) on 
November 19, 2011 (file bolmad11), the following models have been estimated: 

 ·
(0.243) (0.179) (0.0369)

ln( ) 1.784 0.6998 35 0.6749ln( )i i imarktval ibex bookval= + +  (1) 

RSS=35.69     R2=0.8931     n=92 

 
·

(0.275) (0.778) (0.0423)

(0.088)

ln( ) 1.828 0.4236 35 0.6678ln( )

0.0310 35 ln( )

i i i

i i

marktval ibex bookval

ibex bookval

= + +

+ ´
 (2) 

RSS=35.622     R2=0.8933     n=92 

 

·
(0.310) (0.785) (0.0405)

(0.089) (0.236) (0.221)

(0.263) (0.207)

ln( ) 2.323 0.1987 35 0.6688ln( )

0.0369 35 ln( ) 0.6613 0.6698

0.1931 0.3895 0.

i i i

i i i i

i i

marktval ibex bookval

ibex bookval services consump

energy industry

= + +

+ ´ - -

- - -
(0.324)
7020 iitt

 (3) 

RSS=30.781     R2=0.9078     n=92 

 ·
(0.234) (0.0305)

ln( ) 1.366 0.7658ln( )i imarktval bookval= +  (4) 

RSS=41.625     R2=0.8753     n=92 

For finance=1      ·
(0.560) (0.0702)

ln( ) 0.558 0.9346ln( )i imarkval bookval= +   (5) 

RSS=2.7241     R2=0.9415     n=13 
where  

- marktval is the capitalization value of a company. 
- bookval is the book value of a company.  
- ibex35 is a dummy variable that takes the value 1 if the corporation is included 

in the selective Ibex 35. 
- services, consumption, energy, industry and itc (information technology and 

communication) are dummy variables. Each of them takes the value 1 if the 
corporation is classified in this sector in Bolsa de Madrid. The category of 
reference is finance. 

a) In model (1), what is interpretation of the coefficient on ibex35?   
b) In model (1), is the marktval/bookval elasticity equal to 1?  
c) In model (2), is the elasticity marktval/bookval the same for all 

corporations included in the sample? 
d) Is model (4) valid both for corporations included in ibex 35 and for 

corporations excluded? 
e) In model (3), what is interpretation of the coefficient on consump? 
f) Is the coefficient on consump significatively negative? 
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g) Is the introduction of dummy variables for different sectors statistically 
justifiable? 

h) Is the marktval/bookval elasticity for the financial sector equal to 1? 

Exercise 5.18 (Continuation óf exercise 4.37). Using file rdspain, the equations which 
appear in the attached table have been estimated. 

The following variables appear in the table: 
- rdintens is expenditure on research and development (R&D) as a percentage of 

sales,  
- sales are measured in millions of euros, 
- exponsal is exports as a percentage of sales;  
-  medtech and hightech are two dummy variables which reflects if the firm 

belongs to a medium or a high technology sector. The reference category 
corresponds to the firms with low technology, 

- workers is the number of workers. 
 (1) 

rdintens 
(2) 

rdintens 
(3) 

rdintens 

(4) (5) (6) 
 rdintens rdintens rdintens 
 for hightech=1 for medtech=1 for lowtech=1 
exponsal 0.0136 0.0101 0.00968 0.00584 0.0116 0.00977 
  (0.00195) (0.00193) (0.00189) (0.00792) (0.00300) (0.00169) 
        
workers 0.000433 0.000392 0.000394 0.00196 0.0000563 0.000393 
  (0.0000740) (0.0000725) (0.000208) (0.000338) (0.0000815) (0.000121) 
        
hightech  1.448 0.976    
   (0.141) (0.151)    
        
medtech  0.361 0.472    
   (0.109) (0.112)    
        
hightech×   0.00153    
workers   (0.000271)    
        
medtech×   -0.000326    
workers   (0.000222)    
        
intercept 0.394 0.137 0.143 1.211 0.577 0.142 
  (0.0598) (0.0691) (0.0722) (0.313) (0.103) (0.0443) 
              
n 1983 1983 1983 296 616 1071 
R2 0.0507 0.0986 0.138 0.113 0.0278 0.0459 
RSS 9282.7 8815.0 8425.3 4409.0 2483.6 1527.5 
F 52.90 54.06 52.90 18.71 8.776 25.72 
df_n 2 4 6 2 2 2 
df_d 1980 1978 1976 293 613 1068 

Standard errors in parentheses  

a) In model (2), all other factors being equal, is there evidence that 
expenditure on research and development (expressed as a percentage of 
sales) in high technology firms is greater than in low technology firms? 
How strong is the evidence? 
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b) In model (2), all other factors being equal, is there evidence that rdintens 
in medium technology firms is equal to low technology firms? How strong 
is the evidence?  

c) Taking as reference model (2), if you had to test the hypothesis that 
rdintens in high technology firms is equal to medium technology firms, 
formulate a model that allows you to test this hypothesis without using 
information on covariance matrix of the estimators 

d) Is the influence of workers on rdintens associated with the level of 
technology in the firms? 

e) Is the model (1) valid for all firms regardless of their technological level? 

Exercise 5.19 To explain the overall satisfaction of people (stsfglo), the following model 
were estimated using data from the file hdr2010: 

 
·

(0.584) (0.00000617) (0.009)

2

0.375 0.0000207 0.0858  

  0.642    144       

i i istsfglo gnipc lifexpec

R n

= − + +

= =
 (1) 

 

·
(0.897) (0.00000572) (0.18)

(0.179) (0.259)

2

2.911 0.0000381 1.215

1.215 0.7901   

  0.748    144      

i i i

i i

stsfglo gnipc lifexpec

dlatam dafrica

R n

= + +

+ −

= =

 (2) 

 

·
(1.014) (0.000006) (0.0147) (0.177)

(1.712) (0.0000456) (0.0295)

2

1.701 0.0000327 0.0527 1.166

3.096 0.0000673 0.0699       

  0.760   

i i i i

i i i i i

stsfglo gnipc lifexpec dlatam

dafrica gnipc dafrica lifexpec dafrica

R

= + + +

− + × − ×

=  144      n =

 (3) 

where  
- gnipc is gross national income per capita expressed in PPP 2008 US dollar 

terms, 
- lifexpec is life expectancy at birth, i.e., number of years a newborn infant 

could be expected to live,  
- dafrica is a dummy variable that takes value 1 if the country is in Africa, 
- dlatam is a dummy variable that takes value 1 if the country is in Latin 

America. 
a) In model (2), what is the interpretation of the coefficients on dlatam and 

dafrica?  
b) In model (2), do dlatam and dafrica individually have a significant positive 

influence on global satisfaction? 
c) In model (2), do dlatam and dafrica have a joint influence on global 

satisfaction?  
d) Is the influence of life expectancy on global satisfaction smaller in Africa 

than in other regions of the world? 
e) Is the influence of the variable gnipc greater in Africa than in other regions 

of the world at 10%? 
f) Are the interactions of people living in Africa and the variables gnipc and 

lifexpec jointly significant? 
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Exercise 5.20 The equations which appear in the attached table have been estimated using 
data from the file timuse03. This file contains 1000 observations corresponding to a 
random subsample extracted from the time use survey for Spain carried out in 2002-2003. 

The following variables appear in the table: 
- educ is years of education attained,  
- sleep, paidwork and unpaidwrk are measured in minutes per day, 
- female, workday (Monday to Friday), spaniard and houswife are dummy 

variables. 
a) In model (1), is there a statistically significant tradeoff between time 

devoted to paid work and time devoted to sleep?  
b) In model (1), is the coefficient on unpaidwk statistically significant? 
c) In model (1), is there evidence that women sleep more than men? 
d) In model (2), are workday and spaniard individually significant? Are they 

jointly significant? 
e) Is the coefficient on housewife statistically significant? 
f) Are the interactions between female and educ, paidwork and unpaidwk 

jointly significant? 
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 (1) (2) (3) (4) (5) (6) 
 Sleep Sleep Sleep Sleep Sleep sleep 

       
educ -4.669 -4.787 -4.805 -4.754 -4.782 -4.792 
 (0.916) (0.912) (0.912) (0.913) (0.917) (0.917) 

       
persinc 0.0238 0.0207 0.0195 0.0210 0.0208 0.0208 
 (0.00587) (0.00600) (0.00607) (0.00601) (0.00601) (0.00601) 

       
age 0.854 0.879 0.895 0.884 0.879 0.891 
 (0.174) (0.174) (0.174) (0.174) (0.174) (0.302) 

       
paidwork -0.258 -0.247 -0.246 -0.248 -0.246 -0.247 
 (0.0150) (0.0159) (0.0159) (0.0160) (0.0210) (0.0159) 

       
unpaidwk -0.205 -0.198 -0.188 -0.224 -0.198 -0.198 
 (0.0184) (0.0184) (0.0196) (0.0365) (0.0185) (0.0184) 

       
female 4.161 3.588 3.981 2.485 3.638 3.727 
 (1.465) (1.467) (1.493) (1.975) (1.691) (3.287) 

       
workday  -19.31 -19.46 -19.47 -19.30 -19.30 
  (7.168) (7.165) (7.171) (7.173) (7.172) 

       
spaniard  -47.50 -46.88 -47.90 -47.63 -47.51 
  (19.99) (19.98) (20.00) (20.10) (20.00) 

       
houswife   -14.71    
   (10.42)    

       
unpaidwk    0.00607   
×female    (0.00726)   
paidwork     -0.000324  
×female     (0.00540)  

       
age× female      -0.00308 
      (0.0652) 

       
intercept 588.9 648.3 646.6 651.9 648.2 647.8 
 (13.62) (24.34) (24.36) (24.73) (24.39) (26.40) 

       
N 1000 1000 1000 1000 1000 1000 
R2 0.316 0.325 0.326 0.325 0.325 0.325 
RSS 9913901.3 9789312.3 9769648.2 9782424.0 9789276.9 9789290.3 
F 76.58 59.62 53.27 53.06 52.95 52.95 
df_n 6 8 9 9 9 9 
df_d 993 991 990 990 990 990 

Standard errors in parentheses 

Exercise 5.21 To study infant mortality in the world, the following models have been 
estimated using data from the file hdr2010:  

 ·
(4.58) (0.0002) (0.1866) (0.003)

93.02 0.00037 0.6046 0.003i i i ideathinf gnipc physicn contrcep= - - -  

 (1) 
RSS=40285     R2=0.6598     n=108  
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·

(5.96) (0.0002) (0.1879) (0.1042)

(5.05)

78.55 0.00042 0.3809 0.6989

17.92

i i ideathinf gnipc physicn contrcep

dafrica

= - - -

+
 (2) 

RSS=35893     R2=0.6851     n=108 

 

·
(6.76) (0.0002) (0.1879) (0.1234)

(5.05) (0.000826) (2.2351)

(0.2716)

72.58 0.00044 0.3994 0.5857

17.92 0.0000914 2.0013

0.2172

i i i

i

deathinf gnipc physicn contrcep

dafrica gnipc dafrica physicn dafrica

contrcep dafr

= - - -

+ - ´ - ´

- ´ ica

 (3) 

RSS=34309     R2=0.7109     n=108 
where 

- deatinf is number of infant deaths (one year or younger) per 1000 live births 
in 2008, 

- gnipc is gross national income per capita expressed in PPP 2008 US dollar 
terms, 

- physicn are physicians per 10,000 people in the period 2000-2009, 
- contrcep is the contraceptive prevalence rate using any method, expressed as % 

of married women aged 15–49 for the period 1990-2008, 
- dafrica is a dummy variable that takes value 1 if the country is in Africa. 

a) In model (1), what is interpretation of the coefficients on gnipc, physicn 
and contrcep?  

b) In model (2), what is the interpretation of the coefficient on dafrica?  
c) In model (2), all other factors being equal, do the countries of Africa have 

a greater infant mortality than the countries of other regions of the world? 
d) What is the marginal effect of variable gnipc on infant mortality in model 

(3)? 
e) Is the slope corresponding to the regressor contrcep significantly greater 

for the countries of Africa? 
f) Are the slopes corresponding to the regressors gnipc, physicn and contrcep 

jointly different for the countries of Africa? 
g) Is the model (1) valid for all countries of the world? 

Exercise 5.22 Using a random subsample of 2000 observations extracted from the time 
use surveys for Spain carried out in the periods 2002-2003 and 2009-2010 (file timus309), 
the following models have been estimated to explain time spent watching television: 

 (9.46) (0.620) (0.130) (0.0102)

2

114 3.523 1.330 0.1111

0.169    2000      

watchtv educ age paidwork

R n

= − + −

= =
 (1) 

 
(9.915) (0.615) (0.129) (0.010) (4.903)

2

(5.247)

127 3.653 1.291 0.120 25.146

17.137 2009                 0.184   2000

watchtv educ age paidwork female

y R n

= − + − −

+ = =
 (2) 
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(10.01) (0.615) (0.129) (0.012) (4.899)

2

(6.115) (0.021)

123 3.583 1.302 0.105 24.869

24.536 2009 0.050 2009            0.186    2000     

watchtv educ age paidwork female

y y paidwork R n

= − + − −

+ − × = =
 (3) 

where  
- educ is years of education attained,  
- watchtv and paidwork are measured in minutes per day. 
- female is a dummy variable that takes value 1 if the interviewee is a female 
- y2009 is a dummy variable that takes value 1 if the survey was carried out in 

2008-2009 
a) In model (1), what is interpretation of the coefficient on educ?  
b) In model (1), is there a statistically significant tradeoff between time 

devoted to work and time devoted to watching television?  
c) All other factors being equal and taking as reference model (2), is there 

evidence that men watch television more than women? How strong is the 
evidence? 

d) In model (2), what is the estimated difference in watching television 
between females surveyed in 2008-2009 and males surveyed in 2002-2003? 
Is this difference statistically significant? 

e) In model (3), what is the marginal effect of time devoted to paid work on 
time devoted to watching television? 

f) Is there a significant interaction between the year of the survey and time 
devoted to paid work? 

Exercise 5.23 Using the file consumsp, the following models were estimated to analyze 
if the entry of Spain into the European community in 1986 had any impact on the behavior 
of Spanish consumers: 

 
·

1(84.88) (0.0857) (0.0903)
7.156 0.3965 0.5771t t tconspc incpc conspc −= − + +

  (1)
 

R2=0.9967     RSS=1891320      n=56 

 
·

1(108) (0.0879) (0.0901) (92.56)
102.4 0.3573 0.5992 148.60 1986t t t tconspc incpc conspc y−= − + + +

 (2) 
R2=0.9968     RSS=1802007      n=56 

 

·
1(114) (0.1100) (0.1199) (456.3)

1(0.2338) (0.2182)

79.17 0.5181 0.4186 819.82 1986

0.5403 1986 0.5424 1986

t t t t

t t t t

conspc incpc conspc y

incpc y conspc y

−

−

= + + +

− × + ×  (3) 

R2=0.9972     RSS=1600714     n=56 

 

·
1(118) (0.0968) (0.1051) (348)

(0.0326)

117.03 0.3697 0.5823 41.62 1986

0.0104 1986

t t t t

t t

conspc incpc conspc y

incpc y

−= + + +

+ ×
 (4) 

R2=0.9968     RSS=1798423     n=56 

 
·

1(114) (0.0854) (0.0890) (0.0087)
120.1 0.3750 0.5758 0.0141 1986t t t t tconspc incpc conspc incpc y−= + + + ×

 (5) 
R2=0.9968     RSS=1798927     n=56 
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 (The numbers in parentheses are standard errors of the estimators.) 
a) Test in model (5) whether the marginal propensity to consume in the short 

term was reduced in 1986 and beyond.  
b) Are the interactions between y1986 and the quantitative variables of the 

model jointly significant? 
c) Test whether there was a structural change in the consumption function in 

1986. 
d) Test whether the coefficient on conspct-1 changed in 1986 and beyond.  
e) Was there a gap between consumption before 1986, with respect to 1986 

and beyond?  
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6 RELAXING THE ASSUMPTIONS IN THE LINEAR 
CLASSICAL MODEL 

6.1 Relaxing the assumptions in the linear classical model: an overview 
In chapters 2 and 3, single and multiple linear regression models were formulated, 

including the set of statistical assumptions called the classical linear model (CLM) 
assumptions. Now, let us examine the problems posed by the failure of each one of the 
CLM assumptions and alternative methods for estimating the linear model. 

Assumption on the functional form 
Assumption 1 postulates the following population model:  

 1 2 1 +k ky x x uβ β β= + + +L  (6-1) 

This assumption specifies what the endogenous variable is and its functional form, 
as well as what the explanatory variables are and their functional forms. It also states that 
the model is linear on the parameters 

If we estimate a different population model, a misspecification error is made. The 
consequences of such errors will be discussed in section 6.2. 

Assumptions on the regressors 
The assumptions 2, 3 and 4 were made on the regressors. In the multiple linear 

regression, assumption 2 postulated that the values 2 3, , , kx x xL are fixed in repeated 
samples, that is to say, the regressors are non-stochastic. This is a reasonable assumption 
when the regressors are obtained from experiments. However, it is less admissible for 
variables obtained by observation in a passive way, as in the case of income in the 
consumption function. 

When the regressors are stochastic, the statistical relationship between the 
regressors and the random disturbance is crucial in building an econometric model. For 
this reason, an alternative assumption was formulated as 2*: the regressors 2 3, , , kx x xL  
are distributed independently of the random disturbance. When we assume this alternative 
assumption, the inference, conditional on the matrix of regressors, leads to results that are 
virtually coincident with the case where the matrix X is fixed. In other words, in the case 
of independence between the regressors and the random disturbance, the ordinary least 
squares method is still the optimal method for estimating the vector of coefficients. 
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In assumption 3 it was postulated that the matrix of regressors X contains no 
measurement errors. If there are measurement errors, a very serious econometric problem 
will arise with a complex solution. 

Assumption 4 states that there is no exact linear relationship between the 
regressors, or, in other words, it establishes that there is no perfect multicollinearity in the 
model. This assumption is necessary to calculate the OLS estimators. Perfect 
multicollinearity is not used in practice. Instead, there is often an approximately linear 
relationship between the regressors. In this case the estimators obtained will not be 
accurate, although they still retain the property of being BLUE estimators. In other words, 
the relationship between the regressors makes it difficult to quantify the effect that each 
one has on the regressand. This is due to the fact that the variances of the estimators are 
high. When an approximately linear relationship between the regressors exists, 
multicollinearity is not perfect. Section 6.3 will be devoted to examining the detection of 
non-perfect multicollinearity, along with some possible solutions 

Assumptions on the parameters 
In assumption 5 it was assumed that the parameters are not random. The real world 

suggests that this coefficient constancy is not reasonable. In models using time series data, 
there are often changes in patterns of behavior over time, which would naturally involve 
changes in the regression coefficients. In any case, section 5.6 examines the test of 
structural change which determines whether there has been any change in the parameters 
over time. 

Assumptions on the random disturbance term 
In assumption 6 it is assumed that E(u)=0. This assumption is not empirically 

testable in the general case of models with intercept. 
Before moving on to other assumptions on the random disturbance ui, it should be 

noted that this is an unobservable variable. Information on ui is obtained indirectly 
through the residuals, which will be used for testing the behavior of the disturbances. 
However, the use of residuals to perform tests on disturbances poses some problems. 
When the CLM assumptions are fulfilled, the random disturbances are neither 
autocorrelated nor homoskedastic, whereas the residuals are heteroskedastic and 
autocorrelated under these assumptions. These circumstances are important in the design 
of statistical tests on heteroskedasticity and no autocorrelation. 

If assumptions 7 of homoscedasticity and/or 8 of no autocorrelation are not 
fulfilled, the least squares estimators are still linear and unbiased but they are not the best. 

The assumptions of homoskedasticity and no autocorrelation formulated in 
chapter 3, respectively, may be formulated together indicating that the covariance matrix 
of random disturbances is a scalar matrix, i.e.: 

 2( )E σ′ =uu I  (6-2) 

When one or both assumptions indicated are not fulfilled, then the covariance 
matrix will be less restrictive. Thus, we will consider the following covariance matrix of 
the disturbances: 
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 2( )E σ′ =uu Ω  (6-3) 

where the only restriction imposed on Ω  is that it is a positive definite matrix 
When the covariance matrix is a non-scalar matrix such as (6-3), then one can 

obtain linear, unbiased and best estimators by applying the method of generalized least 
squares (GLS). The expression of these estimators is as follows: 

 
11 1ˆ −− −′ ′ =  β X Ω X X Ω y  (6-4) 

In practice, formula (6-4) is not directly applied. Instead a two-step process that 
leads to exactly the same results is applied. 

In section 6.5, we will examine the tests to determine whether there is 
heteroskedasticity, as well as the particularization of the GLS method in this case. Section 
6.6 will present testing methods and the appropriate treatment of autocorrelation. 

Assumption 9 of normality postulated in the CLM allows us to make statistical 
inferences with known distributions. If the normality assumption is not adequate, then the 
tests will only be approximately valid. In section 6.4, a normality test of the disturbances 
is used to determine whether this assumption is acceptable. 

6.2 Misspecification 
Misspecification occurs when we estimate a different model from the population 

model. The problem in social sciences, and in particular in economics, is that we do not 
usually know the population model. 

Bearing in mind this observation, we shall consider three types of misspecification: 
- Inclusion of irrelevant variables. 
- Exclusion of relevant variables. 
- Incorrect functional form. 

6.2.1 Consequences of misspecification 
We will examine the consequences of each type of misspecification on the OLS 

estimators 

Inclusion of an irrelevant variable 
Let us consider, for example, that the population model is the following: 

 1 2 2y x uβ β= + +  (6-5) 

Consequently, the population regression function (PRF) is given by  

 1 2 2y xµ β β= +  (6-6) 

Now let us suppose that the sample regression function (SRF) estimated is the 
following 

 1 2 2 3 3i i iy x xβ β β= + +% % %%  (6-7) 
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This is the case of inclusion of an irrelevant variable: specifically, in (6-7) we 
have introduced the irrelevant variable x3. What are the effects of including an irrelevant 
variable in the OLS estimators? 

It can be shown that the estimators corresponding to (6-7) are unbiased, that is to 
say, 

1 1( )E β β=%  2 2( )E β β=%  3( ) 0E β =%  

However, the variances of these estimators will be greater than those obtained by 
estimating (6-5) in which x3 is (correctly) omitted. 

This result can be extended to the case of including one or more irrelevant 
variables. In this case OLS estimators are unbiased, but with variances greater than when 
the irrelevant variables are not included in the estimated model. 

Exclusion of a relevant variable 
Let us consider, for example, that the population model is the following: 

 1 2 2 3 3 +i i i iy x x uβ β β= + +  (6-8) 

The PRF is therefore given by: 

 1 2 2 3 3y x xµ β β β= + +  (6-9) 

Now let us suppose that the SRF we estimate, due to ignorance or data 
unavailability, is the following 

 1 2 2i iy xβ β= +% %%  (6-10) 

This is a case of exclusion of a relevant variable: in (6-10) we have omitted the 
relevant variable x3. Is 2β%, obtained by applying OLS in (6-10), an unbiased estimator of 

2β ? 

As appendix 6.1 shows, the estimator 2β% is biased. The bias is 

 
2 2 3

1
2 3

2
2 2

1

( )
( )

( )

n

i i
i

n

i
i

x x x
Bias

x x
β β =

=

−
=

−

∑

∑
%  (6-11) 

The bias is null if, according to (6-11), the covariance between x2 and x3 is 0. It is 
important to remark that the ratio 

2 2 3
1

2
2 2

1

( )

( )

n

i i
i

n

i
i

x x x

x x

=

=

−

−

∑

∑
 

is just the OLS slope ( 2̂δ ) coefficient from regression of x3 on x2. That is to say, 
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2 2 3

1
2 1 2 2 1 2

2
2 2
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( )
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i i
i

n

i
i

x x x
x x x
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δ δ δ =

=

−
= + = +

−

∑

∑
 (6-12) 

Thus, according to (6-72) - in appendix 6.1-, and (6-12), we can write that 

 2 2 3 2̂( )E β β β δ= +%  (6-13) 

Therefore, the bias is equal to 3 2̂β δ . In table 6.1, there is a summary of the sign of 

the bias in 2β% when x3 is omitted in estimating equation. It must be taken into account that the 

sign of 2̂δ  is the same as the sign of the sample correlation between x2 and x3. 

TABLE.1. Summary of bias in 2β% when x3 is omitted in estimating equation.  

 Corr(x2,x3)>0 Corr(x2,x3)<0 
β3>0 Positive bias Negative bias 
β3<0 Negative bias Positive bias 

Incorrect functional form 
If we use a functional form different from the true population model, then the OLS 

estimators will be biased. 
In conclusion, if there is exclusion of relevant variables or/and an incorrect 

functional form has been used, then the OLS estimators will be biased and also 
inconsistent. Therefore, the conventional inference procedures will be invalidated in these 
two cases. 

6.2.2 Specification tests: the RESET test 
To test whether irrelevant variables are included in the model we can apply the 

exclusion restriction tests, which we have examined in chapter 4. 
To test the exclusion of relevant variables or the use of an incorrect functional 

form, we can apply the RESET (Regression Equation Specification Error Test) test. This 
test is a general test for specification errors proposed by Ramsey (1969). In order to 
explain it, consider that the initial model is the following:  

 1 2 2 3 3 +y x x uβ β β= + +  (6-14) 
Now, we introduce an augmented model in which two new variables (z1 and z2) 

appear: 

 1 2 2 3 3 1 1 2 2 +y x x z z uβ β β α α= + + + +  (6-15) 
Taking into account the specification of the two models, the null and alternative 

hypotheses will be the following: 

 0 1 2

1 0

: 0
:  is not true

H
H H

= =α α
 (6-16) 
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The crucial question in building the test is to determine the z variables or 
regressors to be introduced. In the case of exclusion of relevant variables, the z variables 
will be the omitted regressors which may be new variables or also squares and powers of 
previous variables. The test to be applied would be similar to the exclusion tests, but with 
the roles reversed: the restricted model is now the initial model, while the unrestricted 
model corresponds to the augmented model. 

In testing for incorrect functional form, consider, for example, that (6-14) is 
specified instead of the true relationship: 

 1 2 2 3 3ln( ) ln( ) ln( )+y x x uβ β β= + +  (6-17) 
In model (6-17), there is a multiplicative relationship between the regressors. 

Ramsey took into account that a Taylor series approximation of the multiplicative 
relationship would yield an expression involving powers and cross-products of the 
explanatory variables. For this reason, he suggests including, in the augmented model, 
powers of the predicted values of the dependent variable (which are, of course, linear 
combinations of power and cross-product terms of the explanatory variables): 

 
2 3

1 2 2 3 3 1 2ˆ ˆ +y x x y y uβ β β α α= + + + +  (6-18) 

where the ŷ ´s are the OLS fitted values corresponding to the model (6-14). The 
superscripts indicate the powers to which these predictions are raised. The first power is 
not included since it is perfectly collinear with the rest of the regressors of the initial 
model.  

The steps involved in the RESET test are as follows: 

Step 1. The initial model is estimated and the fitted values, ˆiy , are calculated. 

Step 2. The augmented model, which can include one or more powers of ˆiy , is 
estimated. 

Step 3. Taking the 2
initR  corresponding to the initial model and the 2

augmR
corresponding to the augmented model, the F statistic is calculated: 

 
2 2

2

( ) /
(1 ) / ( )

augm init

augm

R R r
F

R n h
−

=
− −

 (6-19) 

where r is the number of new parameters added to the initial model, and h 
is the number of parameters of the augmented model, including the 
intercept.  
Under the null hypothesis, this statistic is distributed as follows:  

 0 ,r n hF H F -| :  (6-20) 

Step 4. For a significance level α, and designating by ,r n hFα
−  the corresponding value 

in the F table, the decision to make is the following: 
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, 0

, 0

If                 reject        

If                 not reject  
r n h

r n h

F F H

F F H

α

α

−

−

≥

<  
Therefore, high values of the statistic lead to the rejection of the initial model. 
In RESET test we test the null hypothesis against an alternative hypothesis that 

does not indicate what the correct specification should be. This test is therefore a 
misspecification test which may indicate that there is some form of misspecification but 
does not give any indication of what the correct specification should be. 
EXAMPLE 6.1 Misspecification in a model for determination of wages  

Using a subsample of data from the wage structure survey of Spain for 2006 (file wage06sp), the 
following model is estimated: 

·
(1.55) (0.146) (0.071)

4.679 0.681 0.293i i iwage    educ  tenure  = + +  

R2=0.249     n=150 
where educ (education) and tenure (experience in the firm) are measured in years and wage in euros per 
hour. 

Considering that we may have a problem of incorrect functional form, an augmented model is 

estimated. In this augmented model - besides educ, tenure, and the intercept - ·
2

iwage  and ·
3

iwage  from the 

initial model are included as regressors. The F statistic calculated using the 2
initR  and 2

augmR , according 

to (6-19), is equal to 4.18. Given that 0.05 0.05
2,145 2,60 3.15F F =; , we reject that, for the levels α=0.05 and α=0.10, 

the linear form is adequate to explain wage determination. On the contrary, given that 0.01 0.01
2,145 2,60 4.98F F =;  

H0 is not rejected for α=0.01. 

6.3 Multicollinearity  

6.3.1 Introduction 
Perfect multicollinearity is not usually seen in practice, unless the model is 

wrongly designed as we saw in chapter 5. Instead, an approximately linear relationship 
between the regressors often exists. In this case, the estimators obtained will generally 
not be very accurate, despite still being BLUE. In other words, the relationship between 
regressors makes it difficult to quantify accurately the effect each one has on the 
regressand. This is due to the fact that the variances of the estimators are high. When there 
is an approximately linear relationship between the regressors, then it is said that there is 
not perfect multicollinearity. The multicollinearity problem arises because there is 
insufficient information to get an accurate estimation of model parameters. 

To analyze the problem of multicollinearity, we will examine the variance of an 
estimator. In the multiple linear regression model, the estimator of the variance of any 
slope coefficient - for example, ˆ

jβ - is equal, as we saw in (3-68), to 

 · 2

2 2

ˆˆvar( )
(1 )j

j jnS R
sb =
-

 (6-21) 

where 2ŝ  is the unbiased estimator of σ2, n is the sample size, 
2
jS  is the sample variance 

of the regressor xj, and 2
jR  is the R-squared obtained from regressing xj on all other x’s. 
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The last of these four factors which determines the value of the variance of ˆ
jβ , 

(1- 2
jR ), is precisely an indicator of multicollinearity. Multicollinearity arises in 

estimating βj   when 2
jR  is “close” to one, but there is no absolute number that we can 

quote to conclude that multicollinearity is really a problem for the precision of the 
estimators. Although the problem of multicollinearity cannot be clearly defined, it is true 
that, for estimating βj, the lower the correlation between xj and the other independent 

variables the better. If 2
jR  is equal to 1, then we would have perfect multicollinearity and 

it is not possible to obtain the estimators of  the coefficients. In any case, when one or 
more 2

jR  are close to 1, multicollinearity is a serious problem. In this case, when making 
inferences with the model, the following problems arise: 

a) The variances of the estimators are very large.  
b) The estimated coefficients will be very sensitive to small changes in the 
data. 

6.3.2 Detection 
Multicollinearity is a problem of the sample, because it is associated with the 

specific configuration of the sample of the x’s. For this reason, there are no statistical 
tests. (Remember that statistical tests only work with population parameters). Instead, 
many practical rules were developed attempting to determine to what extent 
multicollinearity seriously affects the inference made with a model. These rules are not 
always reliable, and in some cases are questionable. In any case, we are going to look at 
some measures that are very useful to detect the degree of multicollinearity: the variance 
inflation factor (VIF) and the tolerance, and the condition number and the coefficient 
variance decomposition. 

Variance inflation factor (VIF) and tolerance 
In order to explain the meaning of these measures, let us suppose there is no linear 

relationship between xj and the other explanatory variables in the model, that is to say, 

the regressor xj is orthogonal to the remaining regressors. In this case, 2
jR  will be zero 

and the variance of ˆ
jβ  will be 

 · 2
*

2

ˆvar( )j
jnS

sb =  (6-22) 

Dividing (6-21) by (6-22), we obtain the variance inflation factor (VIF) as 

 2

1ˆ( )
1j

j

VIF
R

β =
−

 (6-23) 

The VIF statistic calculated according to (6-23) is sometimes called “centered 
VIF” to be distinguished from the “uncentered VIF” which is interesting in models 
without intercept. The E-views programme supplies both statistics. 

Tolerance, which is the inverse of VIF, is defined as  
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 21ˆ( ) 1j jTolerance R
VIF

β = = −  (6-24) 

Thus, ˆ( )jVIF β  is the ratio between the estimated variance and the one that there 
would have been if xj was uncorrelated with the other regressors in the model. In other 
words, the VIF shows the extent to which the variance of the estimator is "inflated" as a 
result of non-orthogonallity of the regressors. It is readily seen that the higher the VIF (or 
the lower the tolerance index), the higher the variance of ˆ

jβ . 

The procedure is to choose each one of the regressors at a time as the dependent 
variable and to regress them against a constant and the remaining explanatory variables. 
We would then get k values for the VIF’s. If any of them is high, then multicollinearity is 
detected. Unfortunately, however, there is no theoretical indicator to determine whether 
the VIF is “high.” Also, there is no theory that tells us what to do if multicollinearity is 
found. 

The variance inflation factor (VIF) and the tolerance are both widely used 
measures of the degree of multicollinearity. Unfortunately, several rules of thumb – most 
commonly the rule of 10 – associated with the VIF– are regarded by many practitioners 
as a sign of severe or serious multicollinearity (this rule appears in both scholarly articles 
and advanced statistical textbooks), but this rule has no scientific justification 

The problem with the VIF (or the tolerance) is that it does not provide any 
information that could be used to treat the problem. 
EXAMPLE 6.2 Analyzing multicollinearity in the case of labor absenteeism  

In example 3.1 a model was formulated and estimated, using file absent, to explain absenteeism 
from work as a function of the variables age, tenure and wage. 

Table 6.2 provides information on the tolerance and the VIF of each regressor. According to these 
statistics, multicollinearity does not appear to affect the wage but there is a certain degree of 
multicollinearity in the variables age and tenure. In any case, the problem of multicollinearity in this model 
does not appear to be serious because all VIF are below 5. 

TABLE 6.2. Tolerance and VIF. 
 Collinearity statistics 

 Tolerance VIF 

age 0.2346 4.2634 
tenure 0.2104 4.7532 
wage 0.7891 1.2673 

Condition number and coefficient variance decomposition 
This method, developed by Belsey et al. (1982), is based on the variance 

decomposition of each regression coefficient as a function of the eigenvalues hλ  of the 
matrix X’X and the corresponding elements of the associate eigenvectors. We will not 
discuss eigenvalues and eigenvectors here, because they are beyond the scope of this book, 
but in any case we will see their application.  

The condition number is a standard measure of ill-conditioning in a matrix. It 
indicates the potential sensitivity of the computed inverse matrix to small changes in the 
original matrix (X’X in the case of the regression). Multicollinearity reveals its presence 

http://en.wikipedia.org/wiki/Condition_number
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by one or more eigenvalues of X’X being “small”. The closer a matrix is to singularity 
the smaller the eigenvalues. The condition number (κ) is defined as the square root of the 
largest eigenvalue (λmax) divided by the smallest eigenvalue (λmin): 

 

max

min

λ
κ =

λ  (6-25) 
When there is no multicollinearity at all, then all the eigenvalues and the condition 

number will be equal to one. As multicollinearity increases, eigenvalues will be both 
greater and smaller than 1 (eigenvalues close to zero indicate a multicollinearity problem), 
and the condition number will increase. An informal rule of thumb is that if the condition 
number is greater than 15, multicollinearity is a concern; if it is greater than 30 
multicollinearity is a very serious concern. 

The variance of ˆ
jβ
 
can be decomposed into the contributions from each one of 

the eigenvalues and can be expressed in the following way: 

 
2

2ˆvar( ) jh
j

h h

u
β σ

λ
= ∑  (6-26) 

Thus, the proportion of the contribution of eigenvalue hλ  in the variance of ˆ
jβ
 is equal to  

 

2

2

0

jh

h
jh k

jh

h h

u

u
λφ

λ=

=

∑
 (6-27) 

High values of jhφ  indicate that, as a consequence of multicollinearity, there is an 
inflation of the variance. Given that eigenvalues close to zero indicate a 
multicollinearity problem, it is important to pay special attention to the contribution of 
the smallest eigenvalues. The contributions corresponding to the smallest eigenvalue may 
give a clue of the regressors which are involved in the multicollinearity problem. 
EXAMPLE 6.3 Analyzing the multicollinearity of factors determining time devoted to housework  

In order to analyze the factors that influence time devoted to housework, the following model was 
formulated in exercise 3.17, using file timuse03: 

1 2 3 4 5houswork educ hhinc age paidwork uβ β β β β= + + + + +  

where educ is the years of education attained, and hhinc is the household income in euros per month. The 
variables houswork and paidwork are measured in minutes per day. 

Table 6.3 provides information on eigenvalues, sorted from the smallest to the largest, and the 
variance decomposition proportions for each eigenvalue are calculated according to (6-27). The condition 
number is equal to 

max

min

542.14 8782
7.06 06E

λ
κ

λ
= = =

−  
The condition number is very big, which would indicate a large amount of multicollinearity.  
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As can be seen in table 6.33, the greater proportions associated with the smallest eigenvalue, which 
is the main cause of multicollinearity in this model, correspond to the regressors educ and age. These two 
regressors are inversely correlated. The greatest proportions associated with the second smallest eigenvalue 
correspond to the regressors educ and the household income, which are positively correlated. 

TABLE 6.3. Eigenvalues and variance decomposition proportions. 
Eigenvalues 7.03E-06 0.000498 0.025701 1.861396 542.1400 

      Variance decomposition proportions 

 
6.3.3 Solutions 

In principle, the problem of multicollinearity is related to deficiencies in the 
sample. The non-experimental design of the sample is often responsible for these 
deficiencies. Let us look at some of the solutions to solve the problem of multicollinearity. 

Elimination of variables 
Multicollinearity can be mitigated if the regressors most affected by 

multicollinearity are removed. The problem with this solution is that the estimators of the 
new model would be biased if the original model was correct. On this issue the following 
reflection should be made. In any case, the researcher is interested in obtaining an 
unbiased estimator (or at least with very small bias) with a reduced variance. The mean 
square error (MSE) includes both factors. Thus, for the estimator ˆ

jβ , the MSE is defined 
as follows: 

 
2ˆ ˆ ˆ( ) ( ) ( )j j jMSE bias varβ β β = +   (6-28) 

If a regressor is eliminated from the model, the estimator of a regressor that is 
maintained (for example, 

ˆ
jβ ) will be biased. Nevertheless, its MSE can be lower than 

that of the original model, because the omission of a variable can sufficiently reduce the 
variance of the estimator. In sum, although the elimination of a variable is not a desirable 
practice in principle, under certain circumstances it can be justified when it contributes to 
decreasing the MSE. 

                                                 
3  In table 6.3, the eigenvalues are ordered from the lowest to the highest as the associated 

eigenvalues in the variance decomposition proportions. It is important to remark that in E-views 
eigenvalues are ordered from the highest to the lowest. However, in this package the condition number is 
defined differently than usual in the econometrics manuals which we have followed. 

      
       Associated Eigenvalue 

Variable 1 2 3 4 5 
      
      C  0.999995  4.72E-06  8.36E-09  1.23E-13  1.90E-15 

EDUC  0.295742  0.704216  4.22E-05  2.32E-09  3.72E-11 
HHINC  0.064857  0.385022  0.209016  0.100193  0.240913 
AGE  0.651909  0.084285  0.263805  5.85E-07  1.86E-08 

PAIDWORK  0.015405  0.031823  0.007178  0.945516  7.80E-05 
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Increasing the sample size  
Given that some degree of multicollinearity is a problem particularly when the 

variances of the estimators increase significantly, the solutions should aim to reduce these 
variances. A solution for increasing the variability of the regressors across the sample 
consists in introducing additional observations. However, this is not always feasible, since 
the data used in empirical analysis generally come from different data sources given the 
researcher only collects information on rare occasions. 

Furthermore, when dealing with experimental designs, the variability of the 
regressors can be directly increased without increasing the size of the sample. 

Using outside sample information 
Another possibility is the use of outside sample information, either by setting 

constraints on the parameters of the model, or by using estimates from other studies. 
Establishing restrictions on the parameters of the model reduces the number of 

parameters to be estimated and therefore alleviates the possible shortcomings of the 
sample information. In any case, these restrictions must be inspired by the theoretical 
model itself, or at least have an economic meaning. 

In general, a disadvantage of this approach is that the meaning attributed to the 
estimator obtained in cross sectional data is very different from that obtained with time 
series data, in the case when both types of data are jointly used. Sometimes these 
estimators can be truly "foreign" or outside the object of study.  

Using ratios  
If instead of the regressand and the regressors of the original model, we use ratios 

with respect to the most affected regressor by collinearity, the correlations among the 
regressors of the model may decrease. One such solution is very attractive for the 
simplicity of implementation. However, the transformations of the original variables of 
the model using ratios can cause other problems. Assuming the original model fulfills the 
CLM assumptions, this transformation implicitly modifies the properties of the model, 
and therefore the disturbances of the transformed model will no longer be homoskedastic 
but heteroskedastic. 

6.4 Normality test 
The F and t significance tests built in chapter 4 are based on the normality 

assumption of the disturbances. But it is not usual to perform a normality test, given that 
a sufficiently large sample -e.g. 50 or more observations - is not often available. However, 
normality tests have recently been receiving a growing interest in both theoretical and 
applied studies. 

Let us examine one test for verifying the assumptions of normality of disturbances 
in an econometric model. This test was proposed by Bera and Jarque, and is based on the 
statistics of skewness and kurtosis of the residuals. 

The skewness statistic is the standardized third-order moment, applied to the 
residuals, and its expression is the following: 
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In a symmetric distribution, as is the case of the normal distribution, the 
coefficient of skewness is 0. 

The kurtosis statistic is the standardized fourth-order moment, applied to residuals, 
and its expression is the following: 
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 (6-30) 

In a standard normal distribution, i.e. in an N(0.1), the coefficient of kurtosis is 
equal to 3. 

The Bera and Jarque statistic (BJ) is given by: 

 ( ) ( )2 2
ˆ ˆ 3

6 24u u
n nBJ γ γ1( ) 2( )

 = + −  
 (6-31) 

In a theoretical normal distribution, the above expression will be equal to 0, as the 
coefficient of skewness and kurtosis respectively take the values 0 and 3. The statistic BJ 
will take higher values as the coefficient of asymmetry is far from 0 and the coefficient 
of kurtosis is far from 3. Under the null hypothesis of normality, the statistic BJ has the 
following distribution 

 2
2nBJ χ→∞→  (6-32) 

The indication n → ∞ means that BJ is an asymptotic test, i.e. valid when the 
sample is sufficiently large. 
EXAMPLE 6.4 Is the hypothesis of normality acceptable in the model to analyze the efficiency of the 
Madrid Stock Exchange? 

In example 4.5, using file bolmadef, we analyzed the market efficiency of the Madrid Stock 
Exchange in 1992, using a model that relates the daily rate of return on the rate of the previous day. Now 
we will test the normality assumption on the disturbances of this model. Given the low proportion of the 
variance explained with this model (see example 4.5), the test of normality of the disturbances is roughly 
equivalent to test the normality of the endogenous variable. 

Table 6.4 shows the coefficients of skewness, kurtosis and the Bera and Jarque statistic, applied to 
the residuals. The asymmetry coefficient (-0.04) is not far from the value 0 corresponding to a distribution 
N(0.1). On the other hand, the coefficient of kurtosis (4.43) is slightly different from 3, which is the value 
in the normal distribution. In this case, we reject the assumption of normality for the usual levels of 

significance, as the Bera and Jarque statistic takes the value of 21.02, which is larger than 2(0.01)
2c = 9.21. 

TABLE 6.4. Normality test in the model on the Madrid Stock Exchange. 
skewness coefficient kurtosis coefficient Bera and Jarque statistic 

-0.0421 4.4268 21.0232 

The fact that the normality assumption is rejected may seem paradoxical, since the values of 
kurtosis and especially of skewness do not differ substantially from the values taken by these coefficients 
in a normal distribution. However, the discrepancies are significant enough because they are supported by 
a large sample size (247 observations). If n (the size of the sample) had been 60 rather than 247, the BJ 
statistic, calculated according to (6-31) and using the same coefficient of skewness and kurtosis, takes the 
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value of 5.11, which is smaller than 2(0.01)
2c = 9.21. To put it another way, with the same coefficients, but 

with a smaller sample, there is not enough empirical evidence to reject the null hypothesis of normality. 
Note that this is due to the fact that the BJ statistic increases proportionally to the size of the sample, but 
the degrees of freedom (2) remain unchanged. 

6.5 Heteroskedasticity 
The homoskedasticity assumption (assumption 7 of the CLM) states that the 

disturbances have a constant variance, that is to say:  

 2( )      1, 2,ivar u i n= =σ   (6-33) 

Assuming that there is only one independent variable, the homoskedasticity 
assumption means that the variability around of the regression line is the same for any 
value of x. In other words, variability does not increase or decrease when x varies, as 
shown in figure 2.7, part a) of chapter 2. In figure 6.1, a scatter plot is shown 
corresponding to a model in which disturbances are homoskedastic.  

If the homoskedasticity assumption is not satisfied, then there is 
heteroskedasticity, or disturbances are heteroskedastic. In figure 2.7, part b) a model with 
heteroskedastic disturbances was represented: the dispersion increases with increasing 
values of x. Figure 6.2 shows the scatter diagram corresponding to a model in which the 
dispersion grows when x grows. 

 
FIGURE 6.1. Scatter diagram corresponding to a 

model with homoskedastic disturbances. 

 
FIGURE 6.2. Scatter diagram corresponding to a 

model with heteroskedastic disturbances. 

6.5.1 Causes of heteroskedasticity 
In models estimated with cross sectional data (for example, demand studies based 

on surveys of household budgets) there are often problems of heteroskedasticity. 
However, heteroskedasticity can also occur in models estimated with time series. 

Let us now consider some factors that can cause disturbances to be heteroskedastic: 
a) Influence of the size of an explanatory variable in the size of the disturbance. 

Let us examine this factor using an example. Consider a model in which spending on 
hotels is a linear function of disposable income. If you have a representative sample of 
the population of a country, the great variability of the income received by families can 
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be seen. Logically, low income families are unlikely to spend large amounts on hotels, 
and in this case we can expect that the oscillations in the expenditure of one family to 
another are not significant. In contrast, in high-income families a greater variability in 
this type of expenditure can be expected. Indeed, high-income families may choose 
between spending a substantial part of their income on hotels or spending virtually 
nothing. The scatter diagram in figure 6.2 may be adequate to represent what happens in 
a model to explain the demand for a luxury good such as spending on hotels. 

b) The presence of outliers can cause heteroskedasticity. An outlier is an 
observation generated apparently by a different population to that generating the 
remaining sample observations. When the sample size is small, the inclusion or exclusion 
of such an observation can substantially alter the results of regression analysis and cause 
heteroskedasticity. 

c) Data transformation. As we saw in a previous section, one of the solutions to 
solve the problem of multicollinearity consisted in transforming the model taking ratios 
with respect to a variable (say xji), i.e. dividing both sides of the model by xji. Therefore, 
the disturbance will now be ui/xji, instead of ui. Assuming that ui fulfills the 
homoskedasticity assumption, the disturbances of the transformed model (ui/xji) will no 
longer be homoskedastic but heteroskedastic. 

6.5.2 Consequences of heteroskedasticity 
When there is heteroskedasticity, the OLS method is not the most appropriate 

because the estimators obtained are not the best, i.e. the estimators are not BLUE. 
Moreover, the OLS estimators obtained when there is heteroskedasticity, in 

addition to not being BLUE, have the following problem. The covariance matrix of the 
estimators obtained by applying the usual formula is not valid when there is 
heteroskedasticity (and/or autocorrelation). Consequently, the t and F statistics based on 
the estimated covariance matrix can lead to erroneous inferences.  

6.5.3 Heteroskedasticity tests 
We are going to examine two heteroskedasticity tests: Breusch-Pagan-Godfrey 

and White. Both of them are asymptotic and have the form of a Lagrange multiplier (LM) 
test. 

Breusch-Pagan-Godfrey (BPG) test 
Breusch and Pagan (1979) developed a test for heteroskedasticity and Godfrey 

(1978) developed another one. Because they are similar, they are usually known as 
Breusch–Pagan–Godfrey (BPG) heteroskedasticity tests. 

The BPG test is an asymptotic test, that is to say, it is only valid for large samples. 
The null and alternative hypotheses of this test can be formulated as follows: 

 
( )2 2

0

2
1 1 2 2 3 3

           i

i i i m mi

H E u i

H z z z

σ

σ α α α α

: = ∀

: = + + + +
 (6-34) 

where the zi’s can be some or all of the xi’s of the model. 
Taking into account the above H1, H0 can be expressed as  
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 0 2 3 0mH α α α: = = =  (6-35) 
The steps involved in this test are as follows: 

Step 1. The original model is estimated and the OLS residuals are calculated. 
Step 2. The following auxiliary regression is estimated, taking as the regressand the 

square of the residuals ( 2ˆiu ) obtained in estimating the original model, 
since we know neither 2

iσ nor 2
iu : 

 2
1 2 2 3 3ˆi i i m mi iu z z zα α α α ε= + + + + +  (6-36) 

The auxiliary regression should have an intercept, although the original 
model is estimated without it. In accordance with expression (6-36), in the 
auxiliary regression there are m regressors in addition to the intercept. 

Step 3. Designating by 2
arR  the coefficient of determination of the auxiliary 

regression, the statistic 2
arnR  is calculated. 

Under the null hypothesis, this statistic (BPG) is distributed as follows:  

 BPG= 2 2
ar mnnR χ→∞→  (6-37) 

Step 4 For a significance level α, and designating by 2( )
m

αχ  the corresponding value 
in χ2 table, the decision to make is the following: 

If 2( )
mBPG > αχ   H0 is rejected 

If 2( )
mBPG ≤ αχ  H0 is not rejected 

In this test, high values of the statistic correspond to a situation of 
heteroskedasticity, that is to say, to the rejection of the null hypothesis. 

EXAMPLE 6.5 Application of the Breusch-Pagan-Godfrey test 

This test will be applied to a sub-sample of 10 observations, which have been used for estimating 
hotel expenditures (hostel) as a function of disposable income (inc). The data appear in table 6.5. 

TABLE 6.5. Hostel and inc data. 
i hostel inc 
1 17 500 
2 24 700 
3 7 250 
4 17 430 
5 31 810 
6 3 200 
7 8 300 
8 42 760 
9 30 650 

10 9 320 
Step 1. Applying OLS to the model,  

1 2hostel inc u= b b+ +  
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using data from table 6.5, the following estimated model is obtained: 
·

(3.48) (0.0065)
7.427 0.0533i ihostel inc= - +  

The residuals corresponding to this fitted model appear in table 6.6. 

 TABLE 6.6. Residuals of the regression of hostel on inc. 

i 1 2 3 4 5 6 7 8 9 10 

ˆiu  -2.226 -5.888 1.100 1.505 -4.751 -0.234 -0.565 8.913 2.777 -0.631 

Step 2. The auxiliary regression which must be estimated is the following: 
2

1 2ˆi i iu incα α η= + +  

Applying OLS, the following results are obtained:  
2ˆ 23.93 0.0799iu inc= − +   R2=0.5045 

Step 3. Using the value of R2, the BPG statistics is:  

BPG= 2
arnR =10(0.56)=5.05. 

Step 4. Given that 2(0.01)
1χ =3.84, the null hypothesis of homoskedasticity is rejected for a 

significance level of 5%, because BPG>3.84, but not for the significance level of 1%.  
Note that the validity of this test is asymptotic. However, the sample used in this example is very 

small.  

White test 
In the White test the hypothetical variables determining the heteroskedasticity are 

not specified. This test is a non-constructive test because it gives no indication of the 
heteroskedasticity scheme when the null hypothesis is rejected 

The White test is based on the fact that the standard errors are asymptotically valid 
if we substitute the homoskedasticity assumption for the weaker assumption that the 
squared disturbance u2 is uncorrelated with all the regressors, their squares, and their cross 
products. Taking this into account, White proposed to carry out the auxiliary regression 
of 2ˆiu , since 2

iu is unknown, on the factors mentioned above. If the coefficients of the 
auxiliary regression are jointly non-significant, then we can admit that the disturbances 
are homoskedastic. According to the assumption adopted, the White test is an asymptotic 
test. 

The application of the White test can pose problems in models with many 
regressors. For example, if the original model has five independent variables, the White 
auxiliary regression would involve 16 regressors (unless some are redundant), which 
implies that the estimation is done with a loss of 16 degrees of freedom. For this reason, 
when the model has many regressors a simplified version of the White test is often 
applied. In the simplified version, the cross products are omitted from the auxiliary 
regression. 

The steps involved in the complete version of the White test are as follows: 
Step 1. The original model is estimated and the OLS residuals are calculated. 
Step 2. The following auxiliary regression is estimated, taking as the regressand the 

square of the residuals obtained in the previous step: 
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 2
1 2 2 3 3ˆi i i m mi iu α α ψ α ψ α ψ ε= + + + + +  (6-38) 

In the above auxiliary regression, the regressors jiψ  are the regressors of 
the original model, their squared values, and the crossproduct(s) of the 
regressors. 
In any case, it is necessary to eliminate any redundancies that occur (i.e. 
regressors that appear repeatedly). For example, the intercept (which is 1 
for all observations) and the square of the intercept cannot appear 
simultaneously as regressors, since they are identical. The simultaneous 
introduction of these two regressors will lead to perfect multicollinearity. 
The auxiliary regression should have an intercept, even if the original 
model is estimated without it. In accordance with expression (6-38), in the 
auxiliary regression there are m regressors as well as the intercept. 

Step 3. Designating by 2
arR  the coefficient of determination of the auxiliary 

regression, the statistic 2
arnR  is calculated.  

Under the null hypothesis, this statistic (W) is distributed as follows:  

 W= 2 2
ar mnnR →∞→ χ  (6-39) 

This statistic is used to test the overall significance of model (6-38).  
Step 4. It is similar to step 4 in Breusch-Pagan-Godfrey test. 

EXAMPLE 6.6 Application of the White test 

This test is going to be applied to data from table 6.5. 
Step 1. This step is the same as in the Breusch-Pagan-Godfrey test. 
Step 2. Since there are two regressors in the original model (the intercept and inc), the regressors 

of the auxiliary regression will be 

1

2
2

3

1
1

i

i i

i i

      i
inc

inc

ψ
ψ

ψ

= ∀

= ×

=

 

Consequently, the model to be estimated is 
2 2

1 2 3ˆi i i iu inc incα α α η= + + +  

By applying OLS to the data from table 6.5, we obtain the following 
2 2ˆ 14.29 0.10 0.00018i i iu inc inc= − +   R2=0.56 

Step 3. By using the R2, we obtain the W statistic: 
W=nR2 =10(0.56)=5.60. 

The number of degrees of freedom is two.  

Step 4. Given that 2(0.10)
2χ =4.61, the null hypothesis of homoskedasticity is rejected for a 10% 

significance level because W=nR2>4.61, but not for significance levels of 5% and 1%.  
Note that the validity of this test is asymptotic too. 

EXAMPLE 6.7 Heteroskedasticity tests in models explaining the market value of the Spanish banks 

To explain the market value (marktval) of Spanish banks as a function of their book value (bookval) 
two models were formulated: one linear (example 2.8) and another one doubly logarithmic (example 2.10). 
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Heteroskedasticity in the linear model 
The linear model is given by 

marktval=β1+ β2bookval+u 
Using data from 20 banks and insurance companies (filework bolmad95), the following results 

were obtained: 
·

(30.85) (0.127)
29.42 1.219marktval bookval+=  

In graphic 6.1, the scatter plot between the residuals in absolute value (ordinate) and the variable 
bookval (in abscissa) is represented. This graphic shows that the absolute values of the residuals, which are 
indicative of the spread of this series, grow with increasing values of the variable bookval. In other words, 
this graph provides an indication but not a formal proof of the existence of heteroskedasticity of the 
disturbances associated with the variable bookval.  

 
GRAPHIC 6.1. Scatter plot between the residuals in absolute value and the variable bookval in the 

linear model. 

The BPG statistic takes the following value: 

BPG= 2
ranR = 20×0.5220=10.44 

As 2(0.01)
1χ =6.64<10.44, the null hypothesis of homoskedasticity is rejected for a significance 

level of 1%, and therefore for α=0.05 and for α=0.10. 
Now we will apply the White test. In this case, the auxiliary regression includes as regressors the 

intercept, the variable bookval, and the square of this variable. The White statistic takes the following value: 

W= 2
ranR = 20×0.6017=12.03 

As 2(0.01)
2χ =9.21=<12.03, the null hypothesis of homoskedasticity is rejected for a significance 

level of 1%. 
Therefore, both tests are conclusive in rejecting the null hypothesis for the usual levels of 

significance. 
Heteroskedasticity in the log-log model 

The estimated log-log model with the same sample was as follows: 
·

(0.265) (0.062)
ln( ) 0.676 0.9384ln( )marktval bookval+=  

In graphic 6.2 the scatter plot between the residuals in absolute value (ordinate), corresponding to 
this estimated model, and the variable ln(bookval) (in abscissa) is represented. As shown, the two largest 
residuals correspond to two banks with small market value. Even disregarding these two cases, apparently 
there is no relationship between the residuals and the explanatory variable of the model. 
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GRAPHIC 6.2. Scatter plot between the residuals in absolute value and the variable bookval in the 

log-log model. 

The results of the two tests of heteroskedasticity applied are shown in table 6.7. 

TABLE 6.7. Tests of heteroskedasticity on the log-log model to explain the market 
value of Spanish banks. 

Test Statistic Table values 

Breusch-Pagan BP=
2
ranR =1.05

 

2(0.10)
2χ =4.61

 

White W=
2
ranR =2.64 

2(0.10)
2χ =4.61 

Both tests carried out indicate that the null hypothesis of homoskedasticity cannot be rejected 
against the alternative hypothesis that the variance of the disturbances is associated with the explanatory 
variable of the model. 

An important conclusion is that, if an econometric model is estimated with cross sectional data, it 
is easy to find observations with very different size. These problems of scale can cause heteroskedasticity 
in the disturbances but can often be solved by using log-log models. 

EXAMPLE 6.8 Is there heteroskedasticity in demand of hostel services?  

In general, heteroskedasticity in the disturbances does not usually appear in demand for food 
commodities. By contrast, heteroskedasticity is usually much more frequent in demand for luxury goods, 
because in the demand for these goods there is a large disparity in the behavior of high income households, 
while in households with low incomes such disparity is very unlikely. 

In view of these considerations, the specification for analyzing the demand for hostel services is 
the following: 

 ( ) 1 2 3 4 5ln ln( )hostel inc secstud terstud hhsize ub b b b b+ + + + +=   (6-40) 

where inc is disposable income of a household, hhsize is the number of household members, and secstud 
and terstud are two dummies that take the value one if individuals have completed secondary and tertiary 
studies respectively.  

The results obtained, using file hostel, are the following (file hostel): 

·
(2.26) (0.324) (0.258) (0.088)(0.333)

ln( ) 16.37 2.732ln( ) 1.398 2.972 0.444i i i iihostel inc secstud terstud hhsize- + + + -=
 

R2=0.921      n=40 

Note that hostel services are a luxury good, as the elasticity of demand/income for this good is 
very high (2.73). This means that if income increases by 1%, spending on hostel services will increase, on 
average, by 2.73%. As can be seen, families where the main breadwinner has secondary studies (secstud) 
or, especially, higher education (terstud), spend more on hostel services than if the main breadwinner only 
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has primary education. However, spending on hostel services will decrease as household size (hhsize) 
increases. 

Graphic 6.3 shows the scatter plot between the residuals in absolute value and the variable ln(inc). 
Income (or a transformation of it) is the main candidate, if not the only one, to explain the hypothetical 
heteroskedasticity in the disturbances. As shown in the graphic, the dispersion of residuals is smaller for 
low incomes than for middle or upper incomes.  

We will now apply the two tests of heteroskedasticity that have been discussed in this section. 

 
GRAPHIC 6.3. Scatter plot between the residuals in absolute value and the variable ln(inc) in the 

hostel model. 

The results of the two tests of heteroskedasticity applied are shown in table 6.8 

TABLE 6.8. Tests of heteroskedasticity in the model of demand for hostel services. 
Test Statistic Table values 

Breusch-Pagan-Godfrey BPG=
2
ranR =7.83

 

2(0.05)
2χ =5.99

 

White W= 2
ranR =12.24 2(0.01)

2χ =9.21 

In the BPG test we reject the null hypothesis of homoskedasticity for a significance level of α=0.05, 
but not for α=0.01. 

Since there are many dummy variables in the model, including cross products in the auxiliary 
regression, this can lead to serious problems of multicollinearity. For this reason, in the auxiliary regression 
cross products are not included. Not surprisingly, among the regressors of the auxiliary regression squares 
of secstud and terstud are not included because they are dummies. Given the value obtained in the White 
statistic, we reject the null hypothesis of homoskedasticity for a significance level of α=0.01. Therefore, 
the White test is more conclusive in rejecting the homoskedasticity assumption. 

6.5.4 Estimation of heteroskedasticity-consistent covariance 
When there is heteroskedasticity and we apply OLS, we cannot make correct 

inferences by using the covariance matrix associated to the OLS estimates, because this 
matrix is not a consistent estimator of the covariance matrix of the coefficients. 
Consequently, the t and F statistics based on that estimated covariance matrix can lead to 
erroneous inferences. 

Therefore, in the case that there is heteroskedasticity and OLS have been applied, 
a consistent estimate of the covariance matrix should be looked for to make inferences. 
White derived a consistent estimator of the covariance matrix under heteroskedasticity. 
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However, it is important to note that this estimator does not work well if the sample is 
small, given that it is an asymptotic approximation. 

Most econometric packages allow standard errors to be calculated by the White 
procedure. By using these consistent standard deviations, adequate tests can be made 
under the heteroskedasticity assumption. 
EXAMPLE 6.9 Heteroskedasticity consistent standard errors in the models explaining the market value of 
Spanish banks (Continuation of example 6.7) 

In the following estimated equation of the linear model, using file bolmad95, standard deviations 
of the estimates are calculated by the White procedure and therefore they are consistent under 
heteroskedasticity: 

·
(18.67) (0.249)

29.42 1.219marktval bookval+=  

As can be seen, the standard error of the bookval coefficient goes from 0.127 in the usual procedure 
to 0.249 in the White procedure. However, the p-value remains very low (0.0001). Accordingly, the 
significance of the variable bookval for all usual levels is still maintained. By contrast, the intercept, which 
has no special meaning in the model, now has a standard error (18.67), which is lower than that obtained 
with the usual procedure (30.85). 

If we apply the White procedure to the  log-log model, the following results are obtained: 
·

(0.3218) (0.0698)
ln( ) 0.676 0.9384ln( )marktval bookval= +  

In this case, the standard error of ln(bookval) coefficient is practically the same in the two 
procedures. 

From the above results, the following conclusions can be obtained. In determining the market 
value of Spanish banks, disturbances of the linear model are strongly heteroskedastic. Therefore, when 
using a consistent estimate, the standard deviation is almost doubled compared to the standard one. By 
contrast, in the log-log model, which is not affected by heteroskedasticity, there is little difference between 
the standard errors obtained with both procedures. 

6.5.5 The treatment of the heteroskedasticity 
In order to estimate a model with heteroskedastic disturbances it is necessary to 

know or, if it is unknown, to estimate the pattern of heteroskedasticity. Thus, suppose that 
the standard deviation of the disturbances follows this scheme: 

 ( )i jif xσ =  (6-41) 

As indicated in epigraph 6.1, the method GLS allows BLUE estimators to be 
obtained when disturbances are heteroskedastic. If we know scheme (6-41), the 
application of GLS is performed in two stages. In the first stage, the original model is 
transformed by dividing both sides by the standard deviation. Therefore, according to 
(6-41), the transformed model is given by 

 

( ) ( ) ( ) ( ) ( ) ( )
1 2

1 2 3
1 +          i i i ki i

k
kiji ji ji ji ji

y x x x u
f xf x f x f x f x f x

β β β β= + + + +L

 (6-42) 
It is easily seen that the disturbances of the previous model, (ui/f(xji)), are 

homoskedastic. Therefore, in the second stage OLS is applied to the transformed model, 
thus obtaining BLUE estimators. When we divide each observation by f(xji), we are 
weighting by the inverse of the value taken by this function. For this reason the above 
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procedure is often called weighted least squares (WLS). In this case, the weighting factor 
is 1/f(xji). 

If the function f(xji) is not known, it is necessary to estimate it. In that case, the 
estimation method will not be exactly the GLS method because the application of this 
method involves the knowledge of the covariance matrix, or, at least, knowledge of a 
matrix that is proportional to it. If we estimate the covariance matrix, in addition to the 
parameters, it is said that feasible GLS is applied. In the case of heteroskedastic 
disturbances, the particularization of the feasible GLS method is called WLS (weighted 
least squares) in two stages. In the first the function f(xij) stage is estimated, whereas in 
the second stage OLS is applied to the model transformed using the f(xji) estimates. 

To see how to apply the WLS method in two stages, let us consider the following 
relationship, which simply defines the variance of the disturbances, in the case of 
heteroskedasticity, 

 ( )2 2
i iE u σ=  (6-43) 

Therefore, the squared disturbance can be made equal, as in the regression model, 
to its expectation plus a random variable. That is to say: 

 2 2
i i iu σ ε= +  (6-44) 

As the disturbances are not observable, one can establish a relationship analogous 
to the above using residuals instead of disturbances. Therefore,  

 2 2
2ˆi i iu σ η= +  (6-45) 

It should be noted that the above relationship does not have exactly the same 
properties as (6-44) because the residuals are correlated and heteroskedastic, even if the 
disturbances fulfill the CLM assumptions. However, in large samples they will have the 
same properties. 

If we use the residuals as the regressand instead of the squared residuals, we must 
take the absolute values, since the standard deviation takes only positive values. Taking 
into account (6-45), the following relationship can be established: 

 ( )2
2 2ˆi i i ij iu f xσ η η= + = +  (6-46) 

Since the function f(xij) is generally unknown, different functions are often tried. 
Here there are some of the most common: 

 

1 2 2

1 2 2

1 2 2

1 2 2

ˆ

ˆ

1ˆ

ˆ ln( )

i ji i

i ji i

i i
ji

i ji i

u x

u x

u
x

u x

α α η

α α η

α α η

α α η

= + +

= + +

= + +

= + +

 (6-47) 

The functional form with the best fit (a higher coefficient of determination or a 
smaller AIC statistic) is selected. For the transformation two circumstances are 
contemplated, depending on the significance of the intercept. If this coefficient is 
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statistically significant, the model is transformed by dividing by the fitted values of the 
selected equation. If it is not statistically significant, the model is transformed by dividing 
by the regressor corresponding to the selected equation. Thus, if the selected equation 
were the second one of (6-47), with the intercept not being significant, the transformed 
model would be as follows: 

 2 3
1 2 3

1 +          i i i ki i
k

ji ji ji ji ji ji

y x x x u
x x x x x x

β β β β= + + + +L

 (6-48) 
Note that if the intercept is not significant, the estimated parameters are not 

involved in the transformation of the model, but they are if the intercept is significant. As 
the estimators in models (6-47) are biased, although consistent, it is not convenient to 
transform the models by applying the fitted values, ˆiu -obtained by using 0α̂  and 1α̂ - 
except when the significance of the intercept is very high (e.g., exceeding 1%). 
EXAMPLE 6.10 Application of weighted least squares in the demand of hotel services (Continuation of 
example 6.8) 

Since the two tests applied to the model to explain the cost of hotel services indicate that the 
disturbances are heteroskedastic, we apply the weighted least squares method to estimate the model (6-40).  

First, we estimate the four models (6-47), using as the regressand the residuals ˆiu  -in absolute 
value- obtained in the estimation of  model (6-40) by OLS. The results are presented below: 

¶ 2

(0.143) (2.73)
ˆ 0.0239 0.0003                   0.1638iu inc R+= =  

¶ 2

( 1.34) (2.82)
ˆ 0.4198 0.0235             0.1733iu inc R

-
- += =  

¶ 2

(5.39) ( 2.87)

1ˆ 0.8857 532.1                    0.1780iu R
inc-

-= =  

¶ 2

( 2.46) (2.88)
ˆ 2.7033 0.4389ln( )         0.1788iu inc R

-
- += =  

In the above results, the t-statistic appears below each coefficient. 
The functional form in which ln(inc) appears as a regressor is selected because it corresponds to 

the highest R2 obtained. Since the coefficient of the independent term is not statistically significant at 1%, 
following the recommendation, WLS are applied taking 1/ln(inc) as the weighting variable. In estimating 
WLS, the following results were obtained: 

·
(2.15) (0.309) (0.247) (0.085)(0.326)

ln( ) 16.21 2.709ln( ) 1.401 2.982 0.445i i i iihostel inc secstud terstud hhsize- + + + -=
 

R2=0.914      n=40 
Compared to the OLS estimates of example 6.5, it can be seen that the differences are very small, 

which is indicative of the robustness of the model. 

6.6 Autocorrelation 
No autocorrelation, or no serial correlation assumption (assumption 8 of the CLM) 

states that disturbances with different subscripts are not correlated with each other: 

 ( ) 0          i jE u u i j= ≠  (6-49) 

That is, the disturbances corresponding to different periods of time, or to different 
individuals, are not correlated with each other. Figure 6.3 shows a plot corresponding to 
disturbances which are not autocorrelated. The x axis is time. As can be seen, disturbances 
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are randomly distributed above and below the line 0 (theoretical mean of u). In the figure, 
each disturbance is linked by a line to the disturbance of the following period: in total this 
line crosses the line 0 on 13 occasions. 

 
FIGURE 6.3. Plot of non-autocorrelated disturbances. 

The transgression of the no autocorrelation assumption occurs quite frequently in 
models using time series data. It should be noted also that autocorrelation can be positive 
as well as negative. Positive autocorrelation is characterized by leaving a trail over time, 
because the value of each disturbance is near the value of the disturbance which precedes 
it. Positive autocorrelation occurs, by far, much more frequently in practice than the 
negative one. Figure 6.4 shows a plot corresponding to disturbances which are positively 
autocorrelated. As can be seen, the line which links successive disturbances crosses the 
line 0 only 4times. 

By contrast, disturbances affected by negative autocorrelation present a saw tooth 
configuration, since each disturbance often takes the opposite sign of the disturbance 
which precedes it. In figure 6.5, the plot corresponds to disturbances which are negatively 
autocorrelated. Now the line 0 is crossed 21 times by the line which links successive 
disturbances. 

 
FIGURE 6.4. Plot of positive autocorrelated 

disturbances. 

 
FIGURE 6.5. Plot of negative autocorrelated 

disturbances. 

6.6.1 Causes of autocorrelation 
There are several reasons for the presence of autocorrelation in a model, some of 

which are as follows: 
 a) Specification bias. That is, it can be caused by using an incorrect functional 

form or the omission of a relevant variable.  
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Let us suppose the correct functional form for determining wage as a function of 
years of experience (exp) is as follows: 

2
1 2 3wage exp exp uβ β β= + + +  

Instead of this model, the following one is fitted: 

1 2wage exp vβ β= + +  

In the second model, the disturbance has a systematic component                           
( 2

3v exp uβ= + ). In figure 6.5, a scatter diagram (generated for the first model) and the 
fitted function of the second model are represented. As can be seen, for the low values of 
exp the fitted model overestimates wages; for intermediate values of exp wages are 
underestimated; finally, for high values the fitted model again overestimates wages. This 
example illustrates a case in which the use of an uncorrected functional form provokes 
positive autocorrelation. 

On the other hand, the omission of a relevant variable in the model could induce 
positive autocorrelation if that variable has, for example, a cyclical behavior.  

 
FIGURE 6.6. Autocorrelated disturbances due to a specification bias. 

b) Inertia. The disturbance term in a regression equation reflects the influence of 
those variables affecting the dependent variable that have not been included in the 
regression equation. To be precise, inertia or the persisting effects of excluded variables 
of the model –and included in u- is probably the most frequent cause of positive 
autocorrelation. As is well known, macroeconomic time series -such as GDP, production, 
employment and price indexes- tend to move together: during expansion periods these 
series tend to increase in parallel, while in times of contraction they tend to decrease also 
in a parallel form. For this reason, in regressions involving time series data, successive 
observations of the disturbance are likely to be dependent on the previous ones. Thus, this 
cyclical behavior can produce autocorrelation in the disturbances.  

c) Data Transformation. As an example let us consider the following model to 
explain consumption as a function of income: 

 1 2t t tcons inc u= b b+ +  (6-50) 
For the observation t-1, we can write 
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 1 1 2 1 1t t tcons inc u= b b- - -+ +  (6-51) 

If we subtract (6-51) from (6-50), we obtain  

 2t t tcons inc u= bD D + D  (6-52) 

where 1t t tcons cons cons -D -= , 1t t tinc inc inc -D -=  and 1t t t tv u u u -D -= = . 

The equation (6-50) is known as a level form equation, while the equation (6-52) 
is known as the first difference form equation. Both of them are used in empirical analysis. 
If disturbance in (6-50) is not autocorrelated, the disturbance in (6-52), which is equal to 

1t t tv u u --= , will be autocorrelated, because vt and vt-1 have a common element (ut-1). In 
any case it should be noted the model (6-52), as specified, poses other econometric 
problems which will not be addressed here. 

6.6.2 Consequences of autocorrelation 
The consequences of autocorrelation for OLS are somewhat similar to those of 

heteroskedasticity. Thus, if the disturbances are autocorrelated, then the OLS estimator is 
not BLUE because one can find an alternative unbiased estimator with smaller variance. 
In addition to not being BLUE, the estimator obtained by OLS under the assumption of 
autocorrelation presents the problem that the estimation of the covariance matrix of the 
estimators calculated by the OLS usual formulas is biased. Consequently, the t and F 
statistics based on this covariance matrix can lead to erroneous inferences.  

6.6.3 Autocorrelation tests 
In order to test autocorrelation, a scheme of autocorrelation of disturbances in the 

alternative hypothesis must be defined. We will examine three of the best known tests. In 
two of them (the Durbin and Watson test and Durbin’s h test) the alternative hypothesis 
is a first-order autoregressive scheme, while the third one, called the Breusch–Godfrey 
test, is a general test of autocorrelation applicable to higher-order autoregressive schemes. 

Durbin and Watson test  
The econometricians Durbin and Watson proposed the d test in 1950. DW is also 

used to refer to this statistic.  
Durbin and Watson proposed the following scheme for the disturbances ui: 

 2
1        1         (0, )t t t tu u NIDρ ε ρ ε σ−= + < →  (6-53) 

The proposed scheme for ut is a first-order autoregressive scheme, since the 
disturbances appear as regressand and also as regressor lagged a period. In the 
terminology of time series analysis, the scheme (6-53) is called AR(1), that is to say, an 
autoregressive process of order 1. The coefficient of this scheme is ρ, which is required 
to be less than 1 in absolute value so that the disturbances do not have an explosive 
character, when n grows indefinitely. The variable εt is a random variable with a normal 
and independent distribution (which means NID) with mean 0 and variance σ2. 
Consequently, the variable εt fulfills the same assumptions as ut in the CLM assumptions. 
The variables with these properties are often called white noise variables. 
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According to the sign of ρ being positive or negative, the autocorrelation will be 
positive or negative. On the other hand, almost always one-tailed test is performed, 
namely the alternative hypothesis is taken as either positive autocorrelation or negative 
autocorrelation. 

The problem of constructing an autocorrelation test is that the disturbances are not 
observable. The test must therefore be based on the residuals obtained from the OLS 
estimation. This raises problems, since, under the null hypothesis that disturbances are 
not autocorrelated, residuals are autocorrelated. In the construction of their test, Durbin 
and Watson took these factors into account.  

Let us now apply this test. Taking as a reference the scheme defined in (6-53), 
Durbin and Watson formulate the following null and alternative hypothesis of positive 
autocorrelation 

 0

1

H
H

ρ
ρ

: = 0
: > 0

 (6-54) 

Thus, ut=εt is verified under the null hypothesis, i.e. the model fulfills the CLM 
assumptions. 

The statistic used by Durbin and Watson for testing hypotheses (6-54) is the d or 
DW statistic, defined as follows: 
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 (6-55) 

The statistical distribution of d, which is symmetrical with a mean equal to 2, is 
very complicated, since it depends on the particular form of the matrix of regressor X, the 
sample size (n) and the number of regressors (k) excluding the intercept. 

However, for different levels of significance, Durbin and Watson obtained two 
values (dL and dU) for each value of n and k. The rules to test positive autocorrelation are: 

 
If              ,  there is positive autocorrelation.   
If   ,  the test is not conclusive.          
 If            ,  there is not positive autocorrelation.

L

L U

U

d d
d d d
d d

<
≤ ≤

>
 (6-56) 

As can be seen, there are values where the test is not conclusive. This is due to the 
effect that the particular configuration of the matrix X has on the distribution of d. 

If you want to test negative autocorrelation, the alternative hypothesis is the 
following: 

 1H ρ: < 0  (6-57) 

In order to apply the negative autocorrelation test, it is taken into account that the 
statistic d has a symmetrical distribution ranging between 0 and 4. The rules, therefore, 
are the following: 
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Si  4                   ,  there is negative autocorrelation.          
Si  4 4   ,  the test is not conclusive.          
Si  4                   ,  there is not positive autocorrelation.

L

U L

U

d d
d d d

d d

> −
− ≤ ≤ −
< −

 (6-58) 
The Durbin and Watson test is not applicable if there are lagged endogenous 

variables as regressors. 
To be applied to quarterly data, Wallis considered a fourth-order autoregressive 

scheme: 

 2
4 4 4       1         (0, )t t i tu u NIDρ ε ρ ε σ−= + < →  (6-59) 

The above scheme is similar to (6-53), the difference being that the disturbance of 
the right hand side is lagged four periods. The Wallis statistic is similar to (6-55), but 
takes into account that the residuals are lagged four periods. This author designed ad hoc 
tables for testing models in which disturbances follow scheme (6-59). 
EXAMPLE 6.11 Autocorrelation in the model to determine the efficiency of the Madrid Stock Exchange 

In example 4.5, a model was formulated to determine the efficiency of the Madrid stock exchange. 
Graphic 6.4 shows the standardized residuals4 corresponding to the estimation of this model, using file 
bolmadef. The DW statistic is equal to 2.04. (The DW statistic appears in the output of any econometric 
package). As the DW table does not have values for a sample size of 247, we use the corresponding values 
to n=200 and k’= 1. (In the nomenclature of this test, k' is used for the total number of regressors excluding 
the intercept). As the sample size is large we use a significance level of 1%. Upper and lower tabulated 
values, which correspond to the above specification, are as follows: 

dL=1.664; dU=1.684 
Since DW=2.04>dU, we do not reject the null hypothesis that the disturbances are not 

autocorrelated for a significance level of α=0.01, i.e. of 1%, versus the alternative hypothesis of positive 
autocorrelation according to the scheme (6-53). 

 
GRAPHIC 6.4. Standardized residuals in the estimation of the model to determine the efficiency of 

the Madrid Stock Exchange. 

EXAMPLE 6.12 Autocorrelation in the model for the demand for fish 

                                                 
4 Standardized residuals are equal to residuals divided by σ̂ . 
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In example 4.9 we estimated model (4-44), using file fishdem, to explain the demand for fish in 
Spain. The graphic 6.5 shows the standardized residuals obtained in the estimation of this model. This 
graph does not show that there is a significant autocorrelation scheme. In this regard, it should be noted 
that, over a total of 28 observations, the line joining the points of the residuals crosses the axis 0 11 times, 
which indicates a degree of randomness of the distribution of the residuals. 

The value of the DW statistic for testing the scheme (6-53) is 1.202. For n=28 and k'=3, and for a 
significance level of 1%, we get the following tabulated values: 

dL=0.969  dU=1.415 
Since dL<1.202<dU, there is not enough evidence to accept the null hypothesis, or to reject it. 

 
GRAPHIC 6.5. Standardized residuals in the model on the demand for fish. 

Durbin’s h test 
Durbin (1970) proposed a statistic, called h, to test the hypothesis (6-54) in the 

case that one or more lagged endogenous variables appear as explanatory variables. The 
expression of the h statistic is the following: 

 ¶ ( )
ˆ

ˆ1 var j

nh
n

= r
b-

 (6-60) 

where r̂  is the correlation coefficient between ˆiu  and 1ˆiu − , n is the sample size, and 
¶ ( )ˆvar jb  is the variance corresponding to the coefficient of the lagged endogenous 

variable.  

The statistic r̂  can be estimated using the following approximation, ˆ2(1 )d r-;
. If the regressand appears with different time lags as regressors, the variance 
corresponding to the regressor with the lowest lag is selected. 

Under assumptions (6-54), the h statistic has the following distribution: 

 (0,1)nh N® ¥¾ ¾ ¾®  (6-61) 

The critical region is therefore in the tails of the standard normal distribution: the 
tail on the right for positive autocorrelation and the tail on the left for negative 
autocorrelation. 

The statistic (6-60) cannot be calculated if ¶ ( )ˆvar 1jn b ³ . In this case, Durbin 

proposed an alternative procedure to estimate an auxiliary regression: the residuals are 
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taken as the regressand, the regressors are the same as those of the original model and the 
residuals also lagged a period. This procedure is a particular case of the Breusch–Godfrey 
test, which we will see next. 
EXAMPLE 6.13 Autocorrelation in the case of Lydia E. Pinkham 

In example 5.5 with the case of Lydia E. Pinkham, a model to explain the sales of a herbal extract 
was estimated using file pinkham. Graphic 6.6 shows the graph of standardized residuals corresponding to 
this model. As can be seen, it appears that the residuals are not distributed in a random way. Note, for 
example, that from 1936 the residuals take positive values for 8 consecutive years.  

The adequate test for autocorrelation in this model is Durbin’s h statistic, as there is a lagged 
endogenous variable salest-1 in this model. The h statistic is: 

¶ ( ) ¶ ( ) 2

1.2012 53ˆ 1 1
ˆ ˆ2 2 1 53 0.08141 var 1 varj j

n d nh
n n

= = = = 3.61r
b b

é ù é ù
ê ú ê ú- -ê ú ê ú - ´- -ë û ë û

 

Given this value of h, the null hypothesis of no autocorrelation is rejected for α=0.01 or, even, for 
α=0.001, according to the table of the normal distribution. 

 
GRAPHIC 6.6. Standardized residuals in the estimation of the model of the Lydia E. Pinkham case.  

Breusch–Godfrey (BG) test 

The Breusch–Godfrey (1978) test is a general test of autocorrelation applicable to 
higher-order autoregressive schemes, and it can be used when there are stochastic 
regressors such as the lagged regressand. This is an asymptotic test which is also known 
as the LM (Lagrange multipliers) general test for autocorrelation.  

In the BG test, it is assumed that the disturbances ut follow a pth-order 
autoregressive model AR(p): 

2
1 1 2 2        1         (0, )t t t p t p t tu u u u NID− − −= + + + + < →ρ ρ ρ ε ρ ε σ

 (6-62) 
This is simply the extension of the AR(1) scheme of the Durbin and Watson test. 
The null hypothesis and the alternative hypotheses to be tested are:  
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The BG test involves the following steps: 
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Step 1. The original model is estimated and the OLS residuals ( ˆiu ) are calculated. 

Step 2. An auxiliary regression is estimated, in which the residuals ( ˆiu ) are taken 
as the regressand and the regressors of the original model and the residuals 
lagged 1, 2, ... and p periods are taken as regressors: 

 1 2 2 1 1 1ˆ ˆ ˆt t k kt t t p iu x x u uα α α γ γ ε− −= + + + + + + +   (6-63) 

The auxiliary regression should have an intercept, even if the original 
model is estimated without it. In accordance with expression (6-63), in the 
auxiliary regression there are k+p regressors in addition to the intercept. 

Step 3. Designating by 2
arR  the coefficient of determination of the auxiliary 

regression, the statistic 2
arnR  is calculated. 

Under the null hypothesis, the BG statistic is distributed as follows:  

 BG= 2 2
ar k pnnR χ +→∞→  (6-64) 

The BG statistic is used to test the overall significance of the model (6-63). 
For this purpose, the F statistic can also be used. However, in this case it 
has only asymptotic validity, in the same way as with the BG statistic. 

Step 4 For a significance level α, and designating by 2( )
k p

αχ +  the corresponding value 
in χ2 table, the decision to make is the following: 

 If 2( )
k pBG αχ +>  H0 is rejected 

 If 2( )
k pBG αχ +≤  H0 is not rejected 

As a particular case the BG test can be applied to quarterly data using a AR(4) 
scheme. 
EXAMPLE 6.14 Autocorrelation in a model to explain the expenditures of residents abroad 

To explain the expenditures of residents abroad (turimp), the following model was estimated by 
using quarterly data for the Spanish economy (file qnatacsp): 

·
(3.43) (0.276)

ln( ) 17.31 2.0155ln( )t tturimp gdp= - +
 R2=0.531 DW=2.055  n=49 

where gdp is gross domestic product. 
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GRAPHIC 6.7. Standardized residuals in the estimation of the model explaining the expenditures of 

residents abroad.  

Graphic 6.7 shows the standardized residuals corresponding to this model. As can be seen, it 
appears that the residuals are not distributed in a random way because, for example, there are peaks every 
4 quarters, indicating that the autocorrelation has a scheme AR(4). 

The BG statistic, calculated for a AR(4) scheme, is equal to 2
arnR =36.35. Given this value of BG, 

the null hypothesis of no autocorrelation is rejected for α=0.01, since 2( )
5

αχ =15.09. In the auxiliary 

regression, in which 1 2 3ˆ ˆ ˆ, ,t t tu u u− − −  and 4ˆtu − have been used as regressors, 4ˆtu − is the only significant 
regressor. 

6.6.4 HAC standard errors 
As an extension of White’s heteroskedasticity-consistent standard errors that we 

have seen in section 6.5.2, Newey and West proposed a method known as HAC 
(heteroskedasticity and autocorrelation consistent) standard errors that allows OLS 
standard errors to be corrected not only in situations of autocorrelation, but also in the 
case of heteroskedasticity. Remember that the White method was designed specifically 
for heteroskedasticity. It is important to point out that the Newey and West procedure is, 
strictly speaking, valid in large samples and may not be appropriate in small ones. Note 
that a sample of 50 observations is a reasonably large sample. 
EXAMPLE 6.15 HAC standard errors in the case of Lydia E. Pinkham (Continuation of example 6.13) 

Given the existence of autocorrelation in the model for the case of Lydia E. Pinkham, we have 
calculated the standard errors according to the Newey and West procedure. These standard errors allow us 
to make hypothesis tests on parameters correctly. The available sample is 53 observations. In table 6.9 you 
can find the statistics t obtained by the conventional procedure and the procedure HAC, and the ratio 
between them. The t obtained by the procedure HAC are slightly lower than those obtained by the 
conventional method, except the advexp coefficient whose t is surprisingly much higher when the procedure 
HAC is applied. In any case, the same conclusions are obtained for the two methods for significance levels 
of 0.1, 0.05 and 0.01 in the significance test of each parameter. 
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TABLE 6.9.The t statistics, conventional and HAC, in the case of Lydia E. Pinkham. 
regressor t conventional  t HAC ratio 

intercept 2.644007 1.779151 1.49 
advexp 3.928965 5.723763 0.69 

sales(-1) 7.45915 6.9457 1.07 
d1 -1.499025 -1.502571 1.00 
d2 3.225871 2.274312 1.42 
d3 -3.019932 -2.658912 1.14 

6.6.5 Autocorrelation treatment 
In order to estimate an econometric model where the disturbances follow the 

AR(1) scheme, we first consider the case that the value of ρ is known. Although this is 
more an academic assumption which would not happen in reality, it is convenient to adopt 
this assumption initially for presentation purposes. Let us suppose the following linear 
regression model:  

 1 2 2 3 3 +          t t t k kt ty x x x uβ β β β= + + + +L  (6-65) 

If we lag a period in (6-65) and multiply both sides  by ρ  both, we obtain  

 1 1 2 2, 1 3 3, 1 , 1 1+          t t t k k t ty x x x uρ ρβ ρβ ρβ ρβ ρ− − − − −= + + + +L
 (6-66) 

Subtracting (6-66) from (6-65), we have: 

( ) ( ) ( )1 1 2 2 2, 1 , 1 1(1 ) +t t t t k kt k t t ty y x x x x u uρ β ρ β ρ β ρ ρ− − − −− = − + − + + − −L
(6-67) 

As can be seen, according to the scheme given in (6-53), the disturbance term of 
(6-67) fulfills the CLM assumptions. 

Model (6-67) can be estimated directly by least squares if you know the value of 
ρ. The estimator obtained is close to the GLS method if the sample is large enough. The 
GLS method needs to strictly transform the observations 2 through n according to (6-67) 
scheme, but also to transform the first observation in the following way: 

 2 2 2 2
1 2 21 1 1 1 +          t t k kt ty x xρ β ρ β ρ β ρ ε− = − + − + + −L

 (6-68) 

When we estimate ρ together with the other model parameters, then the method is 
called feasible GLS. 

In general, in the application of feasible GLS the transformation of the first 
observation according to (6-68) is ignored. Feasible GLS methods for estimating a model 
in which the disturbances follow a AR(1) scheme can be grouped into three blocks: a) 
two-step methods, b) iterative methods, and c) scanning methods. 

Here we present two methods for block a), called direct method and Durbin two 
stages method. 
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In the first stage of these two methods, ρ is estimated. In the direct method, ρ  is 
easily estimated from the DW statistic, using this approximate ratio ˆ2(1 )DW r-; . In 
the method of Durbin in two stages, we estimate the following regression model in which 
the explanatory variables are the regressors of the original model, the regressors lagged 
one period and the endogenous variable lagged one period: 

 1 2,0 2 2,1 2, 1 0 1 , 1 1+ +          t t t k kt k k t t ty x x x x yα α α α α ρ υ− − −= + + + + +L
 (6-69) 

The coefficient of the lagged endogenous variable is precisely the parameter ρ. In 
the first stage, the model (6-69) is estimated by OLS, taking from it the estimate of ρ. In 
the second stage, applicable to both methods, the model is transformed with the estimation 
of ρ calculated in the first stage as follows: 

 
( ) ( )1 1 2 2 2, 1 , 1ˆ ˆ ˆ ˆ(1 ) +         t t t t k kt k t ty y x x x xρ β ρ β ρ β ρ ξ− − −− = − + − + + −L (6-70) 

Applying OLS to the transformed model we obtain the parameter estimates. An 
exposition of iterative and scanning methods can be seen in Uriel, E.; Contreras, D.; 
Moltó, M. L. and Peiró, A. (1990): Econometría. El modelo lineal. Editorial AC. Madrid. 

Exercises 

Exercise 6.1 Let us consider that the population model is the following: 
 1 2 +i i iy x uβ β= +  (1) 

Instead, the following model is estimated: 

 2 2i iy xβ= %%  (2) 

Is 2β%, obtained by applying OLS in (2), an unbiased estimator of 3β ? 

Exercise 6.2 Let us consider that the population model is the following: 
 2 +i i iy x uβ=  (1) 
Instead, the following model is estimated: 

 1 2 2i iy xβ β= +% %%  (2) 

Is 2β%, obtained by applying OLS in (2), an unbiased estimator of 2β ? 

Exercise 6.3 Let the following models be: 

 1 2 3imp gdp rpimp ub b b= + + +  (1) 

 1 2 3ln( ) ln( ) ln( )imp gdp rpimp ub b b= + + +  (2)  

where imp is the import of goods, gdp is gross domestic product at market prices, and 
rpimp are the relative prices imports/gdp. The magnitudes imp and gdp are expressed in 
millions of pesetas. 

a) Using a sample of the period 1971-1977 for Spain (file importsp), estimate 
models (1) and (2). 

b) Interpret coefficients β2 and β3 in both models. 
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c) Apply the RESET procedure to model (1). 
d) Apply the RESET procedure to model (2). 
e) Choose the most adequate specification using the p-values obtained in 

sections c) and d). 

Exercise 6.4 Consider the following model of food demand 
 1 2 3food rp inc uβ β β= + + +  

where food is spending on food, rp are the relative prices and inc is disposable income. 
Researcher A omitted variable inc, obtaining the following estimation: 

·
(11.85) (0.118)
89.97 0.107i ifood  rp= +  

Researcher B, who is more careful, got the following estimation: 
·

(5.84) (0.067) (0.031)
92.05 0.142 0.236i i ifood rp  inc+= -  

(The numbers in parentheses are standard errors of estimators.) 
Throughout the discussion between researcher A and researcher B about which of 

the two estimated models is most appropriate, researcher A tries to justify his oversight 
on account of the omission being due to a problem of multicollinearity. 

a) In favor of which researcher would you be in view of the results obtained? 
Explain your choice.  

b) Obtain analytically the bias of the estimator of β2 in the estimation carried 
out by researcher A. 

Exercise 6.5 The following production function is formulated: 

1 2 3ln( ) ln( ) ln( )output labor capital uβ β β= + + +  

where output is the amount of output produced, labor is the amount of labor, capital is 
the amount of capital. 

The following data correspond to 9 companies: 
outputi 230 140 180 270 300 240 230 350 120 
labori 30 10 20 40 50 20 30 60 40 

capitali 160 50 100 200 240 190 160 300 150 

A researcher estimates the model mistaking only 8 observations, and obtains the 
following results:  

·
(1.956) (0.124) (0.027)

97.259 0.970 0.650i i ioutput labor capital= + +  

R2 = 0.999 F=3422 
The numbers in parentheses are the standard errors of the estimators and the F 

statistic corresponds to the test of the whole model.  
When he realizes his mistake, he estimates the model with all observations (n=9), 

obtaining in this case the following results:  
·

(32.046) (1.742) (0.376)
75.479 1.970 1.272i i ioutput labor capital= - +  

R2 = 0.824 F= 14.056 
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His confusion is great when comparing the two estimates, and he cannot 
understand why the results become very different when using one more observation. Can 
we find any reason that could justify these differences? 
Exercise 6.6 Suppose in the model 

0 1 1 2 2 +y x x uβ β β= + +  

the R-squared obtained from regressing x1 on x2, which will be called  2
1/2R , is zero.  

Run the following regressions: 

0 1 1+y x uλ λ= +  
0 1 2 +y x uγ γ= +  

a) Will 1̂l  be equal to 1̂b  and 1ĝ  be equal to 2b̂ ? 

b) Will 0b̂  be equal to 0
ˆl  or 0b̂  be equal to 0ĝ ? 

c) Will var( 1̂l ) be equal to var( 1̂b ) and var( 1ĝ ) be equal to var( 2b̂ )? 

Exercise 6.7 An analyst wants to estimate the following model using the observations of 
the attached table: 

31 2 4
2 3 4

iu
i i i iy e x x x eββ β β=  

x2 x3 x4 
3 12 4 
2 10 5 
4 4 1 
3 9 3 
2 6 3 
5 5 1 

What problems can occur in the estimation of this model with these data? 

Exercise 6.8 In exercise 4.8, using the file airqualy, the following model was estimated: 
·

(10.19) (0.0311) (0.0055) (0.0089)

(0.0017) (0.0025)

97.35 0.0956 0.0170 0.0254

0.0031 0.0011

i i ii

i i

airqual popln medincm poverty

fueoil valadd

= + − −

− −
 

R2=0.415     n=30 
a) Calculate the statistic VIF for each coefficient. 
b) What is your conclusion? 

Exercise 6.9 To examine the effects of firm performance on CEO salary, the following 
model is formulated: 

1 2 3 4 5 6ln( ) ln( )salary roa sales profits tenure age uβ β β β β β= + + + + + +  

where roa is the ratio profits/assets expressed as a percentage, tenure is the number of 
years as CEO (=0 if less than six months), and age is age in years. Salaries are expressed 
in thousands of dollars, and sales and profits in millions of dollars. 

a) Using the full sample (447 observations) of the file ceoforbes, estimate the 
model by OLS. 
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b) Apply the normality test to the residuals.  
c) Using the first 60 observations, estimate the model by OLS. Compare the 

coefficients and the R2 of this estimation with that obtained in section a). 
What is your conclusion?  

d) Apply the normality test to the residuals obtained in section c). What is 
your conclusion comparing this result with that obtained in section b)? 

Exercise 6.10 Let the following model be  
 1 2i i iy x uβ β= + +   [1] 
where 

2 2 ,     0,    i i ix x iσ σ= > ∀  

Apply generalized least squares to estimate β2 in model [1].  

Exercise 6.11 Let the following model be  
 i i iy x uβ= +   [1] 
where  

2 2 ,     0,    i i ix x iσ σ= > ∀  
a) Estimate β in model [1] using generalized least squares. 
b) Calculate the variance of the estimator of β. 

Exercise 6.12 Let the model be 
 1 2i i iy x uβ β= + +   [1] 

where the variance of the disturbances is equal to 
2 2 ,     0,    i i ix x iσ σ= > ∀  

1) Applying OLS to the model [1] and taking into account the Gauss-Markov 
assumptions, the variance of the estimator according to (2-16) is 

 

2

2( )ix x
σ

−∑  [2] 

2) Applying OLS to the model [1] and considering that 2 2
i ixσ σ=  and the 

remaining Gauss-Markov assumptions, the variance of the estimator is 
therefore equal to 

 

2 2

2 2

( )
( ( ) )

i i

i

x x x
x x

σ −
−

∑
∑  [3] 

3) Applying GLS to model [1] and considering that 2 2
i ixσ σ=  and the 

remaining Gauss-Markov assumptions, the variance of the estimator is 
therefore equal to 

 

2

2( )i

i

x x
x

σ
−∑

 

[4] 

a) Are the variances [2] and [3] correct?  
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b) Show that [4] is less than or equal to [3]. (Hint: Apply the Cauchy-Schwarz 
inequality which says that 2 2 2

i i i iw z w zé ù é ùé ù£ê ú ê úê úë û ë ûë ûå å å  is true) 

Exercise 6.13 Let the following model be  

1 2hostel inc uα α= + +  
where hostel is the spending on hotels and inc the yearly disposable income 
The following information on 9 families was obtained:  

family hostel inc 
1 13 300  
2 3 200  
3 38 700  
4 47 900  
5 14 400  
6 18 500  
7 25 800  
8 1 100  
9 21 600  

Hostel and income variables are expressed in thousands of pesetas. 
a) Estimate the model by OLS. 
b) Apply the White heteroskedasticity test.  
c) Apply the Breusch-Pagan-Godfrey heteroskedasticity test. 
d) Do you think it is appropriate to use the above heteroskedasticity tests in 

this case? 

Exercise 6.14 With reference to the model seen in exercise 4.5, we assume now that  
2var( ) ln( )i iyε σ=  

a) Are, in this case, the OLS estimators unbiased?  
b) Are the OLS estimators efficient? 
c) Could you suggest an estimator better than OLS? 

Exercise 6.15 Indicate and explain which of the following statements are true when there 
is heteroskedasticity: 

a) The OLS estimators are no longer BLUE. 
b) The OLS estimators 1 2 3

ˆ ˆ ˆ ˆ, , , , kβ β β βL  are inconsistent. 
c) The conventional t and F tests are not valid. 

Exercise 6.16 In exercise 3.19, using the file consumsp, the Brown model was estimated 
for the Spanish economy in the period 1954-2010. The results obtained were the 
following: 

·
1(84.88) (0.0857) (0.0903)

7.156 0.3965 0.5771t t tconspc incpc conspc −= − + +  

R2=0.997     RSS=1891320      n=56 
Using the residuals of the above fitted model, the following regression was 

obtained: 
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· 2
1

2 2
1 1

ˆ( ) 141568 89.71 149.2
0.183 0.221 0.406

t t t

t t t t

u incpc conspc
incpc conspc incpc conspc

-

- -

= + -
- - + ´

 

R2=0.285 
a) Is there heteroskedasticity in the consumption function? 
b) The following estimation, with White heteroskedasticity-consistent 

standard errors, is obtained: 
·

1(66.92) (0.0669) (0.0741)t t tconspc incpc conspc −= ? + ? + ?
 

Can you fill the blanks above? Please do so. 
Explain the difference between the White heteroskedasticity- consistent 
standard errors and the usual standard errors of the initial equation. 

c) Test whether the coefficient on incpc is equal to 0.5. What standard errors 
are you going to use in the inference process? Why? 

Exercise 6.17 Assume the following specification: 

1 2 3
2 2 2      

i i i i

i i

c h m u
h

γ γ γ

σ σ

= + + +

=
 

Would it be appropriate to eliminate the heteroskedasticity to perform the 
following transformation?  

1 2 3
i

i i i
i

c h m u
h

γ γ γ= + + + ? 

Explain your answer.  

Exercise 6.18 Let the following model be  
 1 2y x uβ β= + +   

and we have the following information:  

yi xi ˆiu  

2 -3 1.37 
3 -2 -0.42 
7 -1 0.79 
6 0 -3.00 

15 1 3.21 
8 2 -6.58 

22 3 4.63 

a) Apply the White heteroskedasticity test.  
b) Apply the Breusch-Pagan-Godfrey heteroskedasticity test.  
c) Why is the significance obtained with both tests so different? 

Exercise 6.19 Answer the following questions 
a) Explain in detail what is the problem of heteroskedasticity in the linear 

regression model. 
b) Illustrate briefly the problem of heteroskedasticity with an example. 
c) Propose solutions to the heteroskedasticity problem. 



INTRODUCTION TO ECONOMETRICS 

226 
 

Exercise 6.20 Using a sample corresponding to 17 regions, the following estimations 
were obtained: 

2

2 2 2 2

ˆ 309.8 0.76 3.05                                                            0.989
ˆ 1737.2 17.8 0.09 0.65 10.6 0.31              0.705

i i i

í i i i i i i

y z h R
u z z z h h h R

= − + + =

= − − + + + − =
 

where y is the expenditure on education, z is GDP and h is the number of inhabitants. 
a) Is there a problem of heteroskedasticity? Detail the procedure followed in 

testing. 
b) Assuming that the presence of heteroskedasticity is detected in the 

regression model, what solution would you take to test the significance of 
the explanatory variables of the model? Explain your answer. 

Exercise 6.21 Using data from Spanish economy for the period 1971-1997 (file importsp), 
the following model was estimated to explain the Spanish imports (imp): 

·
(2.81) (0.162) (0.021)

ln( ) 26.58 2.4336ln( ) 0.4494ln( )t t timp gdp rpimp= − + −  

R2=0.997    n=27 
where gdp is the gross domestic product at market prices, and rpimp are the relative prices 
imports/gdp. The variables imp and gdp are expressed in millions of pesetas. 

a) Set up and estimate the auxiliary regression to perform the Breusch-Pagan-
Godfrey heteroskedasticity test. 

b) Apply the Breusch-Pagan-Godfrey heteroskedasticity test using the 
auxiliary regression run in section a).  

c) Set up the auxiliary regression to perform the complete White 
heteroskedasticity test. 

d) Apply the complete White heteroskedasticity test using the auxiliary 
regression run in section c). 

e) Set up the auxiliary regression to perform the simplified White 
heteroskedasticity test. 

f) Apply the simplified White heteroskedasticity test using the auxiliary 
regression run in section e). 

g) Compare the results of the test carried out in sections b), d) and f). 

Exercise 6.22 Using data from file tradocde, the following model has been estimated to 
explain the imports (impor) in OECD countries: 

·
(6.67) (0.658) (0.636)

ln( ) 18.01 1.6425ln( ) 0.5151ln( )i i iimpor gdp popul= + −  

R2=0.614 n=34 
where gdp is gross domestic product at market prices, and popul is the population of each 
country. 

a) What is the interpretation of the coefficient on ln(gdp)? 
b) Set up the auxiliary regression to perform the White heteroskedasticity test. 
c) Apply the White heteroskedasticity test using the auxiliary regression run 

in section b). 
d) Test whether the import/gdp elasticity is greater than 1. To make this test, 

do you need to use the White heteroskedasticity-robust standard errors? 
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Exercise 6.23 Explain in detail what the appropriate autocorrelation test would be in each 
situation: 

a) When the model has no lagged endogenous variables and the observations 
are annual. 

b) When the model has lagged endogenous variables and the observations are 
annual. 

c) When the model has no lagged endogenous variables and the observations 
are quarterly. 

Exercise 6.24 Two alternative models were used to estimate the average cost of annual 
car production of a particular brand in the period 1980-1999: 

2 2

2 2 2

                             0.848;    0.812;     0.51
                   0.852;    0.811;     2.11

c p u R R d DW
c p p u R R d DW

α β

α β γ

= + + = = = =

= + + + = = = =
 

a) When comparing the two estimations, indicate if you detect any  
econometric problem. Explain it. 

b) Depending on your answer to the previous section, which of the two 
models would you choose? 

Exercise 6.25 In the period 1950-1980, the following production is estimated 

(0.24) (0.083) (0.048)
2

ln( ) 3.94 1.45 ln( ) 0.38 ln( )

ˆ 0.994          0.858        0.559

t t to     l k

R DW ρ

= − + +

= = =  
where o is output, l is labor, and k  is capital. 

(The numbers in parentheses are standard errors of the estimators.) 
a) Test whether there is autocorrelation. 
b) If the model had a lagged endogenous variable as an explanatory variable, 

indicate how you would test whether there is autocorrelation. 

Exercise 6.26 Using 38 annual observations, the following demand function for a product 
was estimated: 

2
1(0.39) (0.06)

2.47 0.35 0.9         0.98       1.82i i id      p  d R DW−= + + = =  

where d is the quantity demanded, and p is the price.  
(The numbers in parentheses are standard errors of the estimators. 
a) Is there a problem of autocorrelation? Explain your answer. 
b) List the conditions under which it would be appropriate to use the Durbin 

Watson statistic. 

Exercise 6.27 The following model of housing demand with annual 
observations for the period 1960-1994 is estimated: 

·
1(0.15) (0.05) (0.02) (0.04)

2

ln( ) 0.39 0.31ln( ) 0.67 ln( ) 0.70ln( )

        0.999                  0.52

t t t trent inc price rent

R DW

-= - + - +

= =
 

where v is spending on rent, r is disposable income, p is the price of housing 
(The numbers in parentheses are standard deviations of the estimators). 
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a) Test whether there is autocorrelation. 
b) Taking into account the conclusions reached in section a), how would you 

carry out the significance tests for each one of the coefficients? Explain 
your answer. 

Exercise 6.28 Answer the following questions: 
a) In a model to explain the sales, the estimation is carried out using quarterly 

data. Explain how you can reasonably test whether there is autocorrelation. 
b) Describe in detail, introducing assumptions that you consider appropriate, 

how you would estimate the model when the null hypothesis of no 
autocorrelation is rejected. 

Exercise 6.29 In the estimation of the Keynesian consumption function for the French 
economy, the following results were obtained: 

·
(0.73) (79.39)

2

  1.22 0.854

0.983   DW=0.4205       =30

t tcons inc

R n

= +

=
 

(The numbers in parentheses are the t statistics of the estimators). 
A researcher believes the focus should be placed on the saving function, rather 

than on the consumption function, proposing the following model:  

1 2t t tsaving inc va a= + +   

where  

t t tsaving inc cons= -  
a) Obtain the estimates of α1 and α2.  
b) Estimate the variances of 1α̂  and 2α̂ .  
c) Calculate the DW statistic of the saving model.  
d) Calculate the R2 of the saving model.  

Exercise 6.30 Let the model be 

 2 2
1

                

;          
t t t

t t t t

y x u

u u E i

β

ρ ε ε σ−

= +

 = + = ∀ 
  [1]  

a) If model [1] is transformed by taking differences first, under what 
circumstances is the transformed model preferable to model [1]?  

b) Is it appropriate to use the R2 to compare model [1] and the transformed 
model? Explain your answer.  

Exercise 6.31 Let the model be:  

 1 2t t ty x uβ β= + +   [1]  
The following sample of observations is disposable for the variables x and y:  

yi 6 3 1 1 1 4 6 16 25 36 49 64 
xi -4 -3 -2 -1 1 2 3 4 5 6 7 8 

a) Estimate the model [1] by OLS and calculate the corresponding adjusted 
determination coefficient.  

b) Calculate the Durbin-Watson statistic for the estimations made in a).  
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c) In view of the Durbin and Watson test and the representation of the fitted 
line and residuals, is it appropriate to reformulate model [1]? Justify your 
answer and, if it is yes, estimate the alternative model that you consider 
the most appropriate for the data. 

Exercise 6.32 Let the model be:  

1 2t t ty x uβ β= + +  

( )2
1 ;       0,t t t tu u NIr e e s-= + :  

The following additional information is also disposable:  
0.5ρ =  

yi 22 26 32 31 40 46 46 50 
xi 4 6 10 12 13 16 20 22 

a) Estimate the model by OLS.  
b) Estimate the model by GLS without transforming the first observation.  
c) Which of the two estimators of β2 is more efficient? 

Exercise 6.33 In a study on product demand, the following results were obtained: 

(7.17) (0.05)

2

ˆ          2.30 0.86

0.9687   DW=3.4    15

t ty x

R n

= +

= =
 

(The numbers in parentheses are standard errors of the estimators.) 
Furthermore, the following additional information about the residual regressions is 

disposable:  

(0.210) (0.180)

1/2

(0.098) (0.095)

ˆ1.   0.167 0.127

ˆ2.   0.231 0.218

t t

t t

u x

u x

= +

= +  

a) Detect whether there is autocorrelation. 
b) Detect whether there is heteroskedasticity. 
c) What would be the most appropriate procedure to solve the potential 

problem of heteroskedasticity? 

Exercise 6.34 Using a sample of the period 1971-1997 (file importsp), the following 
model was estimated, using HAC standard errors, to explain the imports of goods in Spain 
(imp): 

·
1(3.65) (0.210) (0.023)

2

 ln( ) 26.58 2.434ln( ) 0.4494ln( )

0.997   DW=0.73    27

t t timp gdp rpimp

R n

-= - + -

= =  
where gdp is gross domestic product at market prices, and rpimp are the relative prices 
import/gdp. Both magnitudes are expressed in millions of pesetas. 

(The numbers in parentheses are standard errors of the estimators.) 
a) Interpret the coefficient on rpimp.  
b) Is there autocorrelation in this model? 
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c) Test whether the imp/gdp elasticity plus four times the imp/rpimp elasticity 
is equal to zero. (Additional information: 2

ˆvar( )β =0.044247; 3
ˆvar( )β

=0.000540; and 2 3
ˆ ˆvar( , )β β =0.004464). 

d) Test the overall significance of this model.  

Exercise 6.35 Using a sample for the period 1954-2009 (file electsp), the following model 
was estimated to explain the electricity consumption in Spain (conselec): 

 

·
(0.46) (0.035)

2

 ln( ) 9.98 1.469ln( )

0.9805   DW=0.18    37

t tconselec gdp

R n

= - +

= =  (1) 
where gdp is gross domestic product at 1986 market prices. The variable conselec is 
expressed in a thousand tonnes of oil equivalent (ktoe) and gdp is expressed in millions 
of pesetas. 

(The numbers in parentheses are standard errors of the estimators.) 
a) Test whether there is autocorrelation applying the Durbin-Watson statistic. 
b) Test whether there is autocorrelation applying the Breusch-Godfrey 

statistic for a AR(2) scheme. 
c) The following model is also estimated:  

 

·
1(0.75) (0.107) (0.072)

2

 log( ) 0.917 0.164log( ) 0.871log( )

0.997   DW=0.93    36

t t tconselec gdp conselec

R n

-= - + +

= =  (2) 
Test whether there is autocorrelation applying the procedure you consider 
appropriate. 

d) Test whether the conselec/gdp elasticity in an equilibrium situation 
( 1 2 3ln( ) ln( ) ln( )e e econselec gdp conselecb b b= + + ) is greater than 1, 
using an adequate procedure. 

Exercise 6.36 The Phillips curve represents the relationship between the rate of inflation 
(inf) and the unemployment rate (unemp). While it has been observed that there is a stable 
short run tradeoff between unemployment and inflation, this has not been observed in the 
long run. 

The following model reflects the Phillips curve: 
 1 2inf = + unempl +uβ β  

Using a sample for the Spanish economy in the period 1970-2010 (file phillipsp), 
the following results were obtained: 

¶
(1.79) (0.120)

12.59 0.3712 ttinf unempl= -
 R2=0.198; DW=0.219;  n=41 

(The numbers in parentheses are standard deviations of the estimators). 
a) Interpret the coefficient on unempl.  
b) Test whether there is first order autocorrelation using Durbin and Watson 

test. 
c) Using the disposable information so far, can you test the significance of the 

coefficient on unempl adequately? 

http://www.econlib.org/library/Enc/Inflation.html
http://www.econlib.org/library/Enc/Unemployment.html
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d) Using the HAC standard errors, test the significance of the coefficient on 
unempl. 

Exercise 6.37 It is important to remark that the Phillips curve is a relative relationship. 
Inflation is considered low or high relative to the expected rate of inflation and 
unemployment is considered low or high relative to the so-called natural rate of 
unemployment. In the augmented Phillips curve this is taken into account: 

1 2 0( )e
t t t t tinf inf = unempl +uβ λ⁄ −− −  

where λ0 is the natural rate of unemployment and 1
e

t tinf ⁄ −  is the expected rate of inflation 
for t formed in t-1. If we consider that the expected inflation for t is equal to the inflation 
in t-1 ( 1 1

e
t t tinf inf⁄ − −= ) and 1 2 0=β β λ− , the augmented Phillips curve can be written as: 

1 1 2t t t tinf inf = unempl +uβ β−− +  

a) Using file phillipsp, estimate the above model.  
b) Interpret the coefficient on unempl.  
c) Test whether there is second order autocorrelation. 
d) Test whether the natural rate of unemployment is greater than 10. 

Appendix 6.1 

First we are going to express the 2β% taking into account that y is generated by the 
model (6-8): 

 

1 2 1 2
1 1

2
2 2

1 2 1 2
1 1

1 2 1 2 1 3 2
1

2
1 2

1

1 2 1 1 2 2 1 2
1 1 1
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2 2

1 2 1 2
1 1

( )( ) ( )

( ) ( )
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( )

( ) ( ) ( )
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n n

i i i i
i i

n n
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i i

n
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n n n
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(6-71)

 
If we take expectations on both sides of (6-71), we have 
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